Glamour: An NFSv4-based File System Federation

Jon Haswell Mgr NAS Systems IBM Almaden Research Center haswell@us.ibm.com

Based on work by Carl Burnett, Jim Myers, Manoj Naik, Steven Parkes, Renu Tewari, Andrew Tridgell

2005 NAS Industry Conference

So what makes a protocol interesting ?

- Let's look at HTTP/HTML
 - 300 Multiple Choices
 - 301 Moved permanently
 - 302 Moved temporarily
 - A HREF="foo.com/bar.html">foo
- The ability to have clients simply and transparently redirect between networks of servers

So what makes a protocol interesting? Let's look at HTTP/HTML - 200 Multiple Chaice So let's go change the world Welcome NFS V4 ntly

So what should we get with NFS V4 leveraging such capabilities

- For the user/client
 - A unified enterprise wide namespace
 - Data always available with the desired performance
 - No broken links, missing data
 - Ability to work even in the presence of network partitions
- For the administrator
 - The ability to easily install and configure such a system, including existing NFS servers
 - The ability to manage such a federated system as a single system
 - The ability to add and remove servers/storage without disrupting clients
 - Automation to optimize system utilization to achieve high level business goals

Project Glamour

- A world where data replicates, is cached and migrates intelligently across networks of file servers, seamlessly, automatically and securely
- Enterprise-wide federation of islands of data
- Enables replication, migration and caching of data across geographically distributed physical file systems
- Implemented as 'middleware' for storage
 - Utilizing existing storage, filing systems and client access protocols

Given existing NFS V4 servers how should such a system be structured

- Change as little as possible
 - Do not modify the underlying block storage or filing systems
 - Make no extensions to the NFS clients
 - Make the smallest modifications to existing NFS servers possible
- Reuse as much as possible
 - Reuse existing Kerberos and RPCGSS infrastructure
 - Reuse existing protocol where possible
- Implement as Middleware for Storage
 - Layer new functions into existing stacks
 - Provide new functionality in simple user space daemons

Glamour's Data Management Architecture

- Federation of NFS V4 servers
 - Centrally administered
 - Server to server movement of datasets
- Centralized administration
 - Can be externally administered as SMI-S style objects
- Persistent namespace and replication, migration and cache information
 - Optionally imported from a global namespace
- Delegation of responsibility
 - Designed to work with unplanned network partitions

Unit of Data Management

- Glamour provides fine grained data management
 - Existing frameworks work at LUN or FS level
 - Allocate a LUN, migrate a file system
 - Glamour works at the dataset level
 - Dataset is the basic unit of data administration
 - A directory or directory tree
 - May be a portion of a mounted filesystem instance
 - More flexible management
 - Replicate a directory
 - Migrate a directory tree
 - Cache a directory tree
 - Better load balancing

Glamour Namespace

Replication

Migration

Caching

Data Movement

Don't re-invent the wheel

- Provides hooks to use existing transfer mechanisms
 - System level copy commands
 - Cluster file systems
 - Block based copy services
 - Sneaker-net

Unless you can invent a better wheel

- In-band transfer mechanisms
 - RPCGSS based copy
 - Advanced compression algorithms
 - Optimized for redundant block elimination
 - Regardless of namespace
 - Minimizing MIPS required

Client Steering

A client connects to a random server

- Starts to walk the namespace
- Starts to cross dataset boundaries
- Servers detect
 - Client network location
 - Servers with available data
 - Servers with free bandwidth
- Client is sent subset of available locations
 - Builds upon previous workload balancing and prediction algorithms
 - Avoiding centralized single point of failure

Automated Data Placement

- Move the data to the client
 - As opposed to direct the client to the data
- System monitors workload and access patterns
 - Defines servers closer to clusters of clients
 - Monitors server workload and spare capacity
 - Based on high level policies will
 - Replicate on demand
 - Migrate on demand
 - Cache on demand
 - Based on distributed algorithms
 - No single point of failure

Status

- We currently have a working systems
 - fs_locations enabled AIX and Linux clients
 - A functioning federation administration server and management tools
 - Functioning AIX and Linux NFS server
- What we have demonstrated
 - A functioning namespace
 - Creation of datasets
 - Replication of datasets
 - High efficiency data movement protocols
 - Basic client steering
- Ongoing work
 - Advanced client steering and automated workload balancing
 - Migration and caching

What we will have achieved ?

- A storage System than
 - Is virtualized
 - Scales
 - Is secure
 - Is optimized and self-optimizing
 - Is self-managing
 - That only requires a NFS V4 infrastructure
 - No additional requirements beyond NFS V4

The future for storage

- NFS servers can be cheap and small (in addition to being large and expensive)
 - The 'cost' of the NFS functionality over an object store is negligible
 - The cost of an NFS server over a SAN based RAID controllers and adapters is small and diminishes with Moores Law
 - Consider the IBM ESS hardware also happens to be one of the worlds fastest NFS servers
 - What will be the difference in \$/user IOP ?
- A federation of NFS servers can utilize existing commodity hardware and network infrastructure
 - Bandwidth is never free but this is about the most economical way to get it
- A federation of NFS servers can be flexible and provide high performance
 - Particularly when coupled to RDMA and pNFS
- Will be reliable and robust
 - Based on existing well understood security paradigms
 - Limits the 'trust' requirement placed on block access devices

The future for NFS

- NFS V4.0 Specification
 - Adequate but not ideal
 - Referral techniques need better documentation for consistency of implementations
 - Capabilities are limited
 - Controlling client steering
 - Describing consistency of file handles and state information
 - Ability to evolve filehandles on data movement
 - Incremental updates can and will improve
- Server side protocols
 - Significant value in defining open server and administration protocols
 - Always envisaged as an offshoot from V4
 - Time to re-energize this effort