

pNFS NAS Industry Conference October, 2004

Brent Welch

welch@panasas.com

October 28, 2004

Abstract

🥒 Scalable I/O problem

1000's of clients accessing shared storage

Asymmetric, Out-of-band solutions offer scalability

- Control path (open/close) different from Data Path (read/write)
- Until now, no standard solutions

PNFS extends NFSv4

- Minimum extension to allow out-of-band I/O
- Standards-based scalable I/O solution

pNFS

Extension to NFSv4

- NFSv4 is a great base, and it allows extension
- Fewest additions that enable parallel I/O from clients
- Avoid entanglements with other features

Layouts are the key additional abstraction

- Describe where data is located and how it is organized
- Client I/O operations can bypass the file server
- Client I/O can access storage devices in parallel (data striping)

Generalized support for asymmetric, out-of-band solutions

- Files: Clean way to do filer virtualization, eliminate botteneck
- Objects: Standard way to do object-based file systems
- Blocks: Standard way to do block-based SAN file systems

Scalable I/O Problem

- Storage for 1000's of active clients => lots of bandwidth
- Scaling capacity through 100's of TB and into PB
- File Server model has good sharing and manageability
 - but it is hard to scale
- Many other proprietary solutions
 - > GPFS, CXFS, StorNext, Panasas, Sustina, Sanergy, ...
 - Everyone has their own client
 - Like to have a standards based solution => pNFS

Scaling and the Client

Gary Grider's rule of thumb for HPC

- I Gbyte/sec for each Teraflop of computing power
- > 2000 3.2 GHz processors => 6TF => 6 GB/sec
- One file server with 48 GE NICs? I don't think so.
- > 100 GB/sec I/O system in '08 or '09 for 100 TF cluster

🦯 Making movies

> 1000 node rendering farm, plus 100's of desktops at night

🦯 Oil and Gas

- 100's to 1000's of clients
- Lots of large files (10's of GB to TB each)

EDA, Compile Farms, Life Sciences ...

Everyone has a Linux cluster these days

Scaling and the Server

Tension between sharing and throughput

- File server provides semantics, including sharing
- Direct attach I/O provides throughput, no sharing

File server is a bottleneck between clients and storage

- > Pressure to make server ever faster and more expensive
- Clustered NAS solutions, e.g., Spinnaker

SAN filesystems provide sharing and direct access

- Asymmetric, out-of-band system with distinct control and data paths
- Proprietary solutions, vendor-specific clients
- Physical security model, which we'd like to improve

Asymmetric File Systems

Control Path vs. Data Path ("out-of-band" control)

Object Storage File Systems

panasas // "Out-of-band" Value Proposition

- Out-of-band allows a client to use more than one storage address for a given file, directory or closely linked set of files
 - > Parallel I/O direct from client to multiple storage devices
- Scalable capacity: file/dir uses space on all storage: can get big
- Capacity balancing: file/dir uses space on all storage: evenly
- Load balancing: dynamic access to file/dir over all storage: evenly
- Scalable bandwidth: dynamic access to file/dir over all storage: big
- Lower latency under load: no bottleneck developing deep queues
- **Cost-effectiveness at scale:** use streamlined storage servers
- / pNFS standard leads to standard client SW: share client support \$\$\$

Scalable Bandwidth

Panasas Bandwidth vs. OSDs

pNFS

Extension to NFSv4

- NFS is THE file system standard
- Fewest additions that enable parallel I/O from clients

Layouts are the key additional abstraction

- Describe where data is located and how it is organized
- Clients access storage directly, in parallel

Generalized support for asymmetric solutions

- Files: Clean way to do filer virtualization, eliminate botteneck
- Objects: Standard way to do object-based file systems
- Blocks: Standard way to do block-based SAN file systems

pNFS Ops Summary

J GETDEVINFO

Maps from opaque device ID used in layout data structures to the storage protocol type and necessary addressing information for that device

🦯 LAYOUTGET

Fetch location and access control information (i.e., capabilities)

LAYOUTCOMMIT

Commit write activity. New file size and attributes visible on storage.

🦯 LAYOUTRELEASE

Give up lease on the layout

/ CB_LAYOUTRETURN

Server callback to recall layout lease

Multiple Data Server Protocols

BE INCLUSIVE !!

panasas

Broaden the market reach

Three (or more) flavors of outof-band metadata attributes:

- BLOCKS: SBC/FCP/FC or SBC/iSCSI... for files built on blocks
- OBJECTS: OSD/iSCSI/TCP/IP/GE for files built on objects

► FILES:

NFS/ONCRPC/TCP/IP/GE for files built on subfiles

Inode-level encapsulation in server and client code

NAS Industry Conference 2004 Page 12

Object Storage

Object interface is midway between files and blocks

- > Create, Delete, Read, Write, GetAttr, SetAttr, ...
- Objects have numeric ID, not pathnames

Clean security model based on shared, secret device keys

- Metadata manager generates capabilities
- Clients present capabilities with each operation
- > Object Storage Device (OSD) checks capability on each access
- <object id, data range, operation(s), expire time, cap version> signed with device key

Based on NASD and OBSD research out of CMU (Gibson et. al)

SNIA T10 standards based. V1 complete, V2 in progress.

NAS Industry Conference 2004 Page 14

Status

PNFS ad-hoc working group

> Dec '03 Ann Arbor, April '04 FAST, Aug '04 IETF, Sept '04 Pittsburgh

🧷 IETF

- Initial pitch at Seoul '04
- Planned addition to NFSv4 charter, D.C. '04 in November

🆍 RFC

- draft-gibson-pnfs-problem-statement-01.txt July 2004
- Requirements RFC for November
- Ops RFC for November

NAS Industry Conference 2004 Page 16

Symmetric File Systems

Distribute storage among all the clients

GPFS (AIX), GFS, PVFS (User Level)

🦯 Reliability Issues

- Compute nodes less reliable because of the disk
- Storage less reliable, unless replication schemes employed

🦯 Scalability Issues

> Stealing cycles from clients, which have other work to do

Coupling of computing and storage

Like early days of engineering workstations, private storage