

Sun Solaris' UFS & NFS Performance CookBook

2004 NAS Industry Conference

Page 1 of 40

Tuning Recipes for I/O Intensive Applications

Roch Bourbonnais

Performance and Availability Engineering Grenoble, France

roch.bourbonnais@sun.com

Sun .

CookBook Tuning

Recipes

Simple tuning recommendations
 Tell-Tale sign

 Hopefully measurable sign indicating that tuning will be beneficial

Stated Tradeoffs

What breaks

Additional resource requirements

UFS & NFS CookBook

Solaris 8, 9 Based NFSv3

I/O Intensive

Based on simple model for Disk, Storage, Volumes & Page Cache.

Disk Subsystem

In a steady state, the complexities of subsystem tend to disappear

Simple Model

- **¬** X IOPS (can go to 140 + i.e. 3 ms latency)
- □ Y MB/s (can go to 40 MB/s)

N disks wide

Sun .

Volume Management

October 12-14, 2004

```
Stripe unit or interlace per disk
```

```
Stripe width = N disks
```

```
Full Stripe
```

- Stripe Unit * Stripe Width
- □ N * Interlace

A Full Stripe is also the Smallest single I/O that may spread over all disks

Interlace can govern per disk I/O size

- □ Should be large enough to allow disk saturation (256K or 1M)
- Not too large to allow spreading of I/O to multiple disks

2004 NAS Industry Conference

Page 6 of 40

8 K blocksizes

Maxcontig blocks laid sequentially

Lost its original purpose

that about rotational delays...

Filesystem

But still very important

Now used for *cluster* size computation

A *cluster* is the I/O size used for large or sequential access patterns

The filesystem clustersize is set from the *maxcontig* parameter *Maxcontig* is expressed in FS pages (8K)

Set with: Newfs -C maxcontig

Dynamically tune with: Tunefs -a maxcontig

Default based on device characteristics

Solaris 8, 9 suffer of too small defaults requiring tuning.

Desired value for all Solaris: 128 (1MB clusters)

Page Cache Based Operations

Clustering increases physical I/O sizes In UFS: Read Cluster == Write Cluster Readahead

Detected 2 sequential blocks -> full cluster read *ahead* Deferred Writes

- Contiguous blocks form a cluster
- I/O is deferred and initiated on a full cluster (or when contiguity is broken)

- 1) Under application control
 - Fsync, fdatasync
 - Open with flags: O_SYNC, O_DSYNC
 - Not to be confused with directio
 - Directio: performance optimisation attempted under certain conditions
 - fsync,etc: semantic implication about data integrity

4 ways of Flushing Dirty pages

2) Cluster Fill up

- Last Close of a file also sends the current cluster to disk
- 3) Fsflush
 - dirty pages flushed every autoup seconds
 - Fsflush runs every tune_t_fsflushr sec
 - Scans (autoup/tune_t_fsflushr) of total memory
 - Exercised by mmap I/O, random and sparse writes
- 4) Pageout
 - If and only if low memory

Iostat xtc 1

□ kr/s, kw/s, r/s, w/s

Use it to compute avg I/O sizes

Per disk and per Volume

Shows BW or IOPS saturation

Bad disk distribution

Discard first set of output (avg since boot)

Tools: iostat

F	-			xterm			· [
Г	ssd0	0.0	40.0 0.0	32784.0 0.0 8.4	209.6 0 99	i	
L			extended dev:	ice statistics		tty	cpu
L	device	r/s	w/s kr/s	kw/s wait actv	svc_t %w %b	tin tout us	sy wt id
L	ssau	0.0	41.0 0.0	33638.9 0.0 8.8	215.0 0 99	, 	
		/	extended dev:	LCE STATISTICS	t 0 0 1 _	tty	cpu
	device	r/s	W/S Kr/S	KW/S Walt actv	SVC_T %W %D	tin tout us	sy wt ia
L	ssau	1.0	94.0 8.0	23319.3 8.3 9.3	184.9 27 100	, ***	
	davriga		evended dev	ku/a juit actu		tip fout up	cpu
L	device	r/s		22406 4 0 0 7 6	SVC_L 5W 5D	, LIN LOUL US	sy wi iu
L	ssau	0.0	second dou	33408.4 0.0 7.8	194.0 0 99	, ++	anu
L	device	r/e	w/s kr/s	kw/s wait acty	suc t %w %b	tin tout us	ev wt id
L	ssd0		42 0 0 0	2200 1 0 0 8 0			sy we ru
L	DDao	0.0	extended dev	ice statistics	190., 0 99	t.t.v	CDU
L	device	r/s	w/s kr/s	kw/s wait actv	svc t %w %b	tin tout us	sv wt id
	ssd0	1.0	43.0 45.0	33602.1 0.0 7.8	176.8 0 99	, ,	-1
		~ - <		- 1 -	•	tty	cpu
	device	856	KRaw	$\sigma \mathbf{w} \mathbf{I} / \mathbf{O}$	S176 %b	tin tout us	sy wt id
	ssd0	0.00		$S \vee 1/O$	5120 61		-
						tty	cpu
	device	r/s	w/s kr/s	kw/s wait actv	svc_t %w %b	tin tout us	sy wt id
	ssd0	_ 0.0	0.0 0.0	0.0 0.0 0.0	0.0 0 0		
	^Ccorn#						

Tools: iostat

- 100% busy means that 100% of the time some I/O operation was in the pipe.
- Not a good indicator of device saturation
 Iostat %w
 - The machine was idle while I/O was pending.
 - Iowait just means it possible to throw more work at the machine.
 - A major Spurious support call generator
 The system is never waiting for I/O
 Some application threads maybe

Vmstat -p 1

world is

October 12-14,

2004

Free: in Solaris 8+, a meaningful value
 sr, apo: indicator of memory shortage
 As always, discard first set of output

mer			page			exe	cutab	le	an	onymo	us	filesystem			
swap	free	re	mf	fr	de	sr	epi	еро	epf	api	apo	apf	fpi	fpo	fpf
653104	253736	3	41	1	0	0	2	0	0	0	0	0	29	0	0
664200	205296	2	27	0	0	0	0	0	0	0	0	0	0	0	0

Page 15 of 40

Tools

-									xte	rm							•
	481488	17360	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	481488	17360	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	memory page							executable				anonymous			ilesys		
	swap	free	re	mf	fr	de	sr	epi	epo	epf	api	apo	apf	fpi	fpo	fpf	
	481488	17360	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	481488	17360	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	481488	17360	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	481488	17360	3	5	0	0	0	0	0	0	16	0	0	0	0	0	
	481488	17320	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	481488	17320	6	155	0	0	0	8	0	0	0	0	0	0	0	0	
	480384	94760	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	480376	62520	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	480376	38888	0	0	6232	0	2435	0	0	48	0	0	32	0	4008	6152	
	480528	18336	0	0	27264	0	13931	. 0	0	664	0	1280	1536	0	14224	25064	
	480528	17176	3	4	4520	0	0	8	0	0	0	0	0	0	4520	4520	
	480528	17208	0	4	4608	0	0	0	0	0	32	0	0	0	4608	4608	
	480504	17216	0	5	15456	0	3966	8	0	216	24	384	448	0	10688	3 14792	
	480504	16240	0	2	9920	0	660	0	0	16	16	128	144	0	9040	9760	
	480504	16848	0	0	7368	0	0	0	0	0	0	0	0	0	7368	7368	
	480504	15800	0	0	7424	0	0	0	0	0	0	0	0	0	7424	7424	
	480504	16696	0	1	12912	0	1618	0	0	16	8	128	128	0	11160) 12768	
	480504	16424	0	0	6264	0	0	0	0	0	0	0	0	0	6264	6264	
	^Ccorn#																

Page 16 of 40

Truss: application behavior Mpstat: cpu imbalance Lockstat: contended locks Lockstat -I: contended cpu Netstat -i: monitor errors Nestat -s: tcp retransmits Kstat ce, ge etc... Roch's Bytemeter

Page 17 of 40

Roch's Bytemeter

October 12-14, 2004

. . .

^{*k*} rbourbon@corn(274): bytemeter ce0

Outbound 0.000534 MB/s; Inbound 0.000000 MB/s Outbound 61.935863 MB/s; Inbound 0.001239 MB/s Outbound 62.364147 MB/s; Inbound 0.001295 MB/s

```
AWKSCRIPT='
NF == 0 {getline line;}
$1 == "obytes64" { obytes = $2; }
$1 == "rbytes64" { rbytes = $2; }
$1 == "snaptime" {
    time = $2;
    obytes_curr = obytes - prev_obytes;
    rbytes_curr = rbytes - prev_rbytes;
    elapse = (time - prev_time)*1e6;
    elapse = (elapse==0)?1:elapse;
    printf "Outbound %f MB/s; Inbound %f MB/s\n", obytes_curr/elapse, rbytes_curr/elapse;
    prev_obytes = obytes;
    prev_time = time;
}
```

Send Request: roch.bourbonnais@sun.com

S10

The Dawn of Dtrace era

Mother of all Tools coming soon to the Solaris world

Dynamic Instrumentation of live kernel and application

Flexible scripting language

UFS throttling NFS daemons Stripping NFS blocksize Fsflush Freebehind Solaris Segmap subsystem Close to open

On the menu

Recipe ufs_HW

Situation: GBs of data written to a file Tell tale Sign:

kernel variable ufs_throttles increasing

As root: echo ufs_throttles/1D | mdb -k

Fix: increase ufs_HW

Memory Requirement

MAX(cluster,ufs_HW) * # active files

UFS server, NFS server

S9 default increased to 16MB (S8 at risk)

b004

Recipe NFSD

Tell tale Sign:

- #active nfs threads equals nfsd parameter
- □ S8: echo \$<threadlist | mdb -k | grep svc_run | wc
- S9+: pstack `pgrep nfsd` | grep nfssys | wc

Fix:

- □ S8: increase nfsd argument in /etc/init.d/nfs.server
- □ S9: increase NFSD_SERVERS entry in /etc/default/nfs

Memory Requirement, approximately

- KMEM: 16K of kernel stack per *active* thread
- □ KMEM: 32K (NFS block) of page cache
- 1000 nfsd threads consume ~ 40MB (used and released on demand) Drawback:
 - □ S8: starvation of user's non-NFS related work
 - □ S9: nfs can be controled with Solaris Resource Management

Recipe: Stripe #1

Situation:

Applications doing lots of Large I/O (>>8k)
 Tell tale Sign:

Sustained disk activity, apps doing large read/write
 Fix:

stripe your volume, set UFS maxcontig and adjust maxphys, set interlace to 256K or 1MB

Expected Throughput in ideal situation

Every disk BW saturated

Memory Requirement

□ MAX (clustersz, ufs_HW) * "# active file"

2004 NAS Industry Conference

Recipe: Stripe #2

Situation:

□ Many Small I/O (< 8k)

FIX:

Recipe Stripe #1 applies if files are large and access sequential:

Readahead means clustersize access to files

Filesize may dictate I/O sizes

Bandwidth per disk ~= AVG file size / disk latency

 You need application concurrency of at least the number of disks

Sun .

Recipe: Stripe #3

- Client issue large (>>32K) read/write
- Server shows 32K (nfs block) physical I/O sizes and keeps small number of disks active

Why:

NFS:

- NFS requests are multi-threaded (client side) to nfs3_max_threads per mount point
- NFSv3 uses 32K block size per thread
- NFS Server threads often cannot coalesce multiple requests into larger I/O, and Server thus issue 32K Physical I/O sizes
- Spindle may saturate at 32K/latency: underacheiving splindle

Fix:

- Increase stripe utilisation by increasing application concurrency
- Increase load per client by increasing number of mounts
- Increase I/O sizes by increasing NFS blocksize

Recipe : nfs3_blocksize

Situation:

Default NFS blocksize may throttle purely data intensive setup.

Tell tale Sign:

 Large client read/write call, but I/O sizes smaller than maxphys/maxcontig.

Fix:

Increase the nfs blocksize

Drawbacks:

Possibly not suitable for small I/O

Recipe : nfs3_blocksize

The problem is that large requests are broken up into blocks. Multiple blocks are then handled concurrently by the multiple nfs kernel threads (on the client).

The requests are not ordered so that sequential nature of the I/O may be lost.

Increasing the nfs blocksize; set kernel parameter

nfs3_bsize on client and

nfs3_max_transfer_size on client & server.

Negotiate *down* (if necessary) the blocksize with mount's rsize, wsize option

• Options not effective to negociate *up*

Situation:

CPU usage > 90%

Tell tale Sign:

Cyclical (5 or 30 second) drops in business metric
 Fix:

- increase autoup
- autoup=300 is common value

Drawbacks

- file changes can be lost in case of system failure
- Data integrity where critical should be managed with fsync() and friends

2004 NAS Industry Conference

Page 28 of 40

Recipe : freebehind

October 12-14, 2004

Read files do not get cached

Tell tale Sign:

Situation:

Repeated sequential reading of file causes I/O each time
 Fix:

Keep freebehind only for very large files
 Set smallfile to, for example, 1/8th of mem
 Or Disable freebehind altogether (set freebehind=0)
 UFS or NFS server

Drawbacks:

Caching large sequential read displaces many other small files.
 Page 29 of 40

2004 NAS Industry Conference

Recipe : segmap_percent

Situation: Dedicated I/O server which has some free memory

By default 12% of memory is segmap-ed

- Segmap is a subset of cached pages
- read,write from segmap-ed pages is faster and costs less cpu to access
- NFS Server or UFS
- Tell tale Sign:
 - Check kstat unix:0:segmap:get* 1
 - Segmap efficientcy: (get_reclaim + get_user) / getmap

Recipe : segmap_percent

Fix: Increase kernel parameter segmap_percent (default 12)

Memory Requirements: segmap_percent of memory will not be in the freelist.

Drawbacks:

- segmap_percent = 100 is like priority_paging=0.
- Doing I/O causes paging storm.
- Pre-Solaris 7 behavior :-(
- Must keep segmap_percent at reasonable value (e.g 50)

Situation:

Apps does many open,write,close over NFS
 Tell tale Sign:

constant open/close activity; significant wait time
 Fix:

mount -F nfs -o nocto

Drawbacks:

file changes not seen immediately on other clients
 NFS Client

Follow-on Project

NFS V4

2004 NAS Industry Conference

Page 34 of 40

Part 4: Everyone's Favorite Snide Remark

2004 NAS Industry Conference

Page 35 of 40

Recipe : RTFM

Situation:

performance not as expected

Tell tale Sign:

I'm lost

Fix:

READ

MEMORY Requirements :

you're allowed to take notes

Drawbacks:

• it takes time

Page 36 of 40

Conclusion

Keep it simple

Knowing about tuning is the simple part

Designing a re-produceable test and measure of success is the tough part (left as exercise)

The Job of Solaris engineering is to make tuning disappear. So re-evaluate tuning with each Solaris release.

Please report if things don't work as you expected

roch.bourbonnais@sun.com

Page 37 of 40

References

/etc/system variables

- maxphys
- autoup
- tune_t_fsflushr
- segmap_percent

Nfsd count

- /etc/init.d/nfs.server
- /etc/default/nfs
- Mount F nfs -o nocto

/etc/system variables

- ufs:ufs_HW
- ufs:freebehind
- ufs:smallfile
- ufs:ufs_throttles (readonly)
- nfs:nfs3_max_threads
- nfs:nfs3_bsize
- nfs:nfs3_max_transfer_size

Maxcontig:

□ newfs -C or tunefs -a

docs.sun.com/ab2/coll.28.24/NFSPERFTUNGU (needs major updating)
 Solaris Tunable Parameters Reference Manual:

docs.sun.com/ab2/coll.736.2/SOLTUNEPARAMREF:
 OOBP (Out Of the Box Performance Project)

http://bigadmin.eng.sun.com:7777/bigadmin/content/perf_tuning/

Jim Mauro, Richard McDougall Solaris Internals: Core Kernel Architecture

ISBN 0-13-022496-0 (C) Prentice Hall, 2000

http://www.sean.de/Solaris/tune.html: Solaris - Tuning Your TCP/IP Stack

Brent Callaghan, NFS Illustrated

□ ISBN 0-201-32570-5 (C) Addison-Wesley

Have Nice Dinner

2004 NAS Industry Conference

Page 40 of 40