

October 22-23, 2002

DAFS Extensions for NFS

Mark Wittle Technical Director Network Appliance mwittle@netapp.com

NFS Industry Conference

Page 1 of 32

C

N O

DN

UF

S E

TR

R E

N

C

Y

S

Presentation Outline

- DAFS Overview
- Direct Access Networks
- DAFS Performance Operations
- DAFS Local File Sharing
 Enhancements
- Applicability for NFS

N

F

S

C

0

F

R

E

N

C

E

N

U

Т

R

Y

DN

S E

DAFS Overview

October 22-23, 2002

NFS Industry Conference

Page 3 of 32

C

NO

DN

UF

S E

TR

R E

N

C

F

Y

F

S

DAFS Derived from NFSv4

- Many things are the same
 - Client-server, request-response messages
 - Basic file & directory operation set
 - File Attributes, ACLs
 - Locks, leases, delegations
 - Authentication types, internationalisation

C

F

R

N

C

E

S E

R E

Y

N O

DN

U

F

S

DAFS - NFS Differences

- Some things are different
 - Session-based (with authentication & attributes)
 - Credit-based flow-control (request throttling)
 - Transport channel aware
 - Different wire protocol format (XDR, Endian)
- Two new areas of focus
 - High performance
 - Local file sharing semantics

C

N O

DN

UF

S E

R

Y

R

N

C

F

F

S

DAFS Performance Focus

- RDMA Support
 - Direct data placement
 - Pre-allocate transfer buffers
 - Split protocol header from application data
 - User-space I/O support
- Sophisticated I/O Controls
 - Batched and chained I/O operations
 - File access pattern hints for cache efficiency

C

NO

DN

UF

S E

R

E

N

C

F

R

Y

F

S

DAFS Local File Sharing

- Application Cluster Environment
 - Access control for cooperating processes
 - Atomic file append operations
- Failure Recovery
 - Extended locking semantics
 - Fencing to control partial cluster failures
 - Server response cache management

C

N O

DN

U F

S E

R

Y

R

E

N

C

E

F

S

Direct Access Networks

NFS Industry Conference

Page 8 of 32

C

N O

DN

UF

S E

R

E

N

C

E

R

Y

F

S

Direct Access Networks

- Technology protocols
 - InfiniBand, VIA, iWARP
- Capabilities
 - Multiple connections multiplexed in HW
 - Memory pre-registration
 - Send/receive messages
 - Remote DMA read/write
 - Asynchronous I/O completion

Page 9 of 32

 N
 I
 C

 F
 N
 O

 S
 D
 N

 U
 F

 S
 E

 T
 R

 R
 E

 Y
 N

 C

 E
 T

 E
 T

 E
 T

 E
 T

 E
 T

 E
 T

 E
 T

 E
 T

 E
 T

Direct Access Benefits

- No data packet fragmentation or reassembly
 - Benefits similar to IP Jumbo Frames, but with larger packets
 - Less transmission overhead with fewer HW interrupts
 - No ordering & space management issues
 - No data copying to recreate contiguous buffers

N

D

R

Y

U F

S E

F

S

C

0

N

R

N

C

F

Direct Access Benefits (2)

- No realignment of data copies
 - Protocol headers and data buffers transmitted separately
 - Allows data alignment to be preserved
- No user/kernel boundary crossing
 - Less system call overhead
- No user/kernel data copies
 - Data transferred directly to application buffers

N O

DN

UF

S E

R

E

N

C

F

R

Y

F

S

DAFS Performance Operations

NFS Industry Conference

Page 12 of 32

October 22-23, 2002

N

D

U

F

S

C

0

N

F

R

N

C

E

S E

R E

Y

DAFS Inline I/O Operations

Inline Read and Write
 Just like NFS

- Pre-allocated buffers, pre-registered with the transport
- Configurable message size limit
- Configurable data offset
- Low transport latency, simple model

N

D

U

R

Y

F

S

ß

0

N

F

R

E

N

C

E

S E

DAFS Direct I/O Operations

- Direct Read and Write
 - 3-part transfer

- Server initiates RDMA operation
- Receive buffer sized & placed at runtime
 - Used for large messages
- Zero-copy, low CPU cost

DAFS Batch I/O Operations

- Synchronous Batch I/O
 - Multi-part transfer

- Server initiates RDMA operation
- Supports multiple files, read/write, scattergather, sync/async, stable delay hint

R

N

C

C

N O

DN

U F

S E

R

Y

October 22-23, 2002

R

E

N

C

E

S

DAFS Batch I/O Ops (2)

- Asynchronous Batch I/O
 - Multi-part transfer

Server initiates RDMA operation

NFS Industry Conference

C

NO

DN

U F

S E

R

E

N

C

R

Y

F

S

DAFS Cache Hints Similar to POSIX madvise

- Access prediction to inform caching policy
 - Random, Sequential, Unknown, Will Need, Don't Need
- Buffer-specific future use hint to inform specific caching decisions
 - Two separate likelihood hints for future Read & Write access
- Cache hint operation and hints included in I/O Operations

NFS Industry Conference

N I C F N O S D N U F S E T R R E Y N C E

Multi-component Lookup

- Multi-component path name lookup
 - An entire pathname is looked up in one operation
 - If an error is encountered partway through the lookup, partial lookup information is returned along with an error status.

C

N O

DN

U F

S E

R E

Y

R

N

C

E

F

S

DAFS Local File Sharing

October 22-23, 2002

NFS Industry Conference

Page 19 of 32

N I C F N O S D N U F S E T R F R E Y N C

Shared Key Reservations

- Access control for cluster member instances
 - Addresses partial restarts
 - Same client, but different temporal instance
 - Reservation (lock) obtained at open with current "key"
 - Access control for cooperating clients
 - Key distribution left to application

N

D

U

S

R

Y

F

S

C

0

N

F

E

R

E

N

C

E

DAFS Fencing

- Access control for cluster failures
 - Stable state

N

D

U

R

Y

SE

S

C

0

N

F

R

N

C

E

DAFS Fencing (2)

- Access control for cluster failures
 - Partial failure

NFS Industry Conference

N

D

U

R

F

S

ß

Ω

N

F

R

E

N

C

S E

DAFS Fencing (3) Access control for cluster failures

Immediate access denial

- Drain operations on server to establish valid serialization point
- Manage a "fencing access list" of clients: allow, deny

NFS Industry Conference

N

DN

U

R

Y

F

S

C

0

F

R

E

N

C

F

S E

DAFS Extended Locking

- Persist locks
 - take effect on lease expiration or on server reboot
 - remain locked until explicitly repaired
 - allow 3rd party recovery following failure
- Auto-Recovery locks
 - limited undo capability after failure
 - modifications performed under a rollback lock are undone following lease expiration or server reboot

C

N

N O

UF

S E

R

Y

R

E

N

C

F

S

DAFS Atomic Append

- Atomic relative to other writers
 - Closes the gap between GET_ATTR and WRITE
 - Server determines current file size and performs the write operation atomically
- Atomic relative to the data buffer
 - Server performs the I/O operation atomically, up to server file system attribute MAX_APPEND_SZ
- Atomic relative to server failures
 - Server performs synchronous I/O to stable storage

 N
 I
 C

 F
 N
 O

 F
 N
 O

 S
 D
 N

 U
 F

 S
 E

 T
 R

 R
 E

 Y
 N

 C
 E

 E
 E

 Y
 N

 E
 E

 Y
 N

 E
 E

 E
 E

 Y
 N

 C
 E

 E
 E

 E
 E

 E
 E

 E
 E

 E
 E

 E
 E

 E
 E

 E
 E

 E
 E

 E
 E

 E
 E

Other DAFS Operations

- Set file attributes during creation
 - Allow file attributes to be specified when a file is created
- Open Unlinked
 - Create a file without having a name in any directory. Subsequently the file can be named by linking it into the directory.
- Delete On Last Close
 - Addresses the .nfs file problem.

C N 0 F S N D U F S E R R E N C

DAFS Response Cache

- Session-based non-volatile Response Cache
 - holds recent state modifying operations
 - number of entries bounded: transport message ordering properties and DAFS flow control constraints
 - Client queriable following a failure
- Provides at-most-once semantics for state modifying file operations

N O

DN

U F

S E

R E

Y

R

N

C

F

F

S

Applicability to NFS (Speculation)

NFS Industry Conference

Page 28 of 32

October 22-23, 2002

C

Ω

N

DN

UF

S E

TR

RE

N

C

E

Y

S

Performance Operations Inline I/O operations • Header padding for data for alignment Batch I/O Similar to NFS Compound Stable Hint useful for high throughput applications Cache Hints Conduit for application madvise calls Buffer caching hints for 2nd-level cache?

Page 29 of 32

C

NO

DN

UF

S E

R E

Y

R

N

C

E

F

S

Local File Sharing

- Clustered application support
 - Fencing, Shared key reservations
 - Are cluster applications becoming more prevalent?
 - No POSIX API, but good for user-space NFS
- Atomic append
 - Really a cluster application performance enhancement

C

N O

DN

UF

S E

R

E

N

C

E

R

Y

F

S

Local File Sharing (2) Multi-component Lookup • Similar to NFS Compound? Require persistent server state **Open Unlinked (No POSIX API)** DOLC Extended Locking (No POSIX API) **Persistent Response Cache**

NFS Industry Conference

C

NO

DN

UF

S E

R

Y

R

N

C

F

S

Conclusions

- DAFS NFS structural differences
 - DAFS design (reliable transport assumption, session-orientation, flowcontrol) enables efficient buffer management, reliable response cache, etc
 - Not trivial to adapt to existing NFS
- DAFS NFS file sharing features
 - Some features easy to introduce
 - May require more server state
 - POSIX API a limitation for some