
Andy Adamson
Connectathon 2013

NFS Client GSS
Context Management
Progress

1

Two GSS Context Management Problems

–  GSS Context expires with un-flushed buffered

WRITEs
–  Kerberos credentials destroyed (kdestroy) but GSS

context is still valid
–  Both solutions in the RFC stage, with working code

2

NFS Client GSS Context Creation & Update

–  TGT is obtained via kinit with a lifetime TGT-L
–  User accesses NFS share which triggers a TGS to

be obtained with lifetime TGS-L
–  TGS-L is (usually) less than TGT-L
–  The TGS is used to setup a GSS context
–  GSS context lifetime == TGS-L

3

NFS Client GSS Context Creation & Update

–  Each GSS RPC call checks the GSS context
lifetime against the current time

–  If the GSS context has expired, an upcall is
performed to renew the context

–  This is only possible if the TGT is still valid. If it is,
another TGS is obtained and a new GSS context is
created

–  If the TGT has expired, the renew upcall fails and
the user has no GSS context so access to the NFS
share stops

4

GSS Context and Buffered WRITEs

–  Current code allows a GSS context to expire with
un-flushed buffered WRITEs

–  A new feature solves this by setting up a credential
key expiry watermark, a “line in the sand”,
watermark seconds from the end of a GSS context
lifetime.

–  The watermark value is based on the
dirty_expire_interval (default 30 seconds) which is
the longest a page can remain un-flushed in the
buffer cache.

5

GSS Context and Buffered WRITEs

–  Each GSS RPC call checks the GSS context
lifetime minus the watermark against the current
time

–  If the GSS context lifetime is within the watermark,
an upcall is performed to renew the context

–  If the upcall fails, a flag is set in the RPC GSS
credential associated with the GSS Context

–  At the beginning of the buffered write code path,
the flag is checked.

–  If the flag is set, the inode is flushed and WRITEs
are sent with NFS_FILE_SYNC

6

GSS Context and Buffered WRITEs

–  Issues to resolve
¡  Watermark value needs to be long enough to flush all

buffered WRITEs and (possibly) send COMMITs
¡  Some dependency on work load
¡  Currently set to 10 seconds past dirty_expire_interval
¡  May be a module parameter

–  Solves issues for NFSv3 and NFSv4
–  NFSv4.1 can use SP4_mach_cred to allow the

machine credential to flush buffered WRITEs on
GSS context expiration

7

GSS Context destruction upon kdestoy

–  Currently kdestroy has no effect on the associated
GSS context

–  User can log off (kdestroy), but NFS GSS access is
still active

–  Problem: how to signal the Kernel GSS layer upon
kdestroy

–  To solve this, I chose the Kernel Keyring service

8

GSS Context and Kernel Keyring

–  We register a new key type called gss-ctx in the
auth_gss module

–  gss-ctx is based on the user key type – we use the
default functions for instantiate, match, revoke,
describe and read.

–  Change the destroy function
–  We add two new user programs gss_login and

gss_logout
¡  (not attached to the names!)

9

gss_login

–  gss_login calls kinit, and then instantiates the
gss_ctx kernel key

–  As an added bonus, we store the location of
the Kerberos credential cache in the key which
GSSD then uses.

–  No more searching for the Kerberos credential
cache

10

gss_logout

–  gss_logout calls kdestroy, and then destroys
the gss_ctx kernel key

–  The gss_ctx key destroy function flushes all GSS
context buffered I/O and then destroys the RPC
GSS credential and associated GSS context

–  For now, it uses the big hammer and calls
sys_sync to flush all data to all file system

11

12

