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The needs behind NFS-Ganesha

* Provide a NFS Interface to services that are
accessible in User Space and that provide
data organized as “tree namespaces”

* Provide an efficient caching device for data
and metadata

* Provide a scalable product, with as few
bottlenecks as possible

* Provide generic support to various
namespaces
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NFS-Ganesha and the TERA compute center

NFS-Ganesha is used via NFSv3 in a
supercomputing environment, in front of
compute clusters since 01/2006

— About 5000 different clients (TERA10 compute
cluster + TERA100 compute cluster)

— heavy load (parallel MPI based simulation code)
The daemon is very stable and scales well on
new machines

— Takes benefit of multi-cores/multi-sockets systems

— Takes benefit of system with a large amount of
memory

Plan to step to NFSv4 with krb5i authentication

Plan to use pNFS with NFS-ganesha by the end
of 2012 on production systems
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Supported protocols

* Currently, NFS-Ganesha supports
— NFSv2 / MOUNTV1
— NFSv3 / MOUNTv3 / NLMv4
— RQUOTAvVI1 and RQUOTAv2
— NFSv4.0

— NFSv4.1

* pNFS’s layout file model is supported

* Other layouts to be coming soon (OSD layout used
with exofs)
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User Space is a nice place ;-)

* Running in User Space makes many things
easier.

— Security Managers (like Kerberos) reside in User
Space, they can be accessed directly via GSSAPI
(no need for “rpc_pipefs™)

— ID mappers (NIS, LDAP) reside in User Space,

they can be accessed directly (the daemon is
linked with libnfsidmap)

— Less constraints for memory allocation than in
kernel space, managing huge pieces of memory is
easy

— When developing in User Space, you won't
(usually) crash the kernel
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Modular architecture

* Some layers make the « core » of the architecture:

RPC Layer : implements ONC/RPCv2 and RPCSEC_GSS (based on libtirpc)

FSAL : File System Abstraction Layer, provides an API to generically address
the exported namespace

Cache Inode: manages the metadata cache for FSAL. It is designed to scale to
millions of entries

File Content Cache: manages the data cache for the FSAL entries

Log management: one API for internal logging (in files) and remote logging (via
syslog API)

Memory allocation and management: NFS-Ganesha do not rely on malloc/free
but allocates a big chunck of memory at startup and manages it on its own. This

is done by using pre-allocated structures and blocks of memory managed as
“Buddy Blocks”

Hash Table: provides a Red-Black Tree based hash table to provide associative
addressing to internal structure. This layer is widely used to build various cache,
including the metadata cache.

FSAL UP / Cache Inode UP: provides the daemon with a way to be notified by
the FSAL that changes have been made to the underlying FS outside Ganesha.
These information is used to invalidate or update the Cache Inode.

* Each layer has a well defined API. It can be modified (e.g. to
implement a different cache policy) without impacting the other
modules
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The modules within NFS-Ganesha

clients requests

Network Forechannel
Network
RPC Dispatcher
P Backchannel
Dup Req Layer RPCSEC_GSS
Mount V1/V3
o NLM, RQUOTA NFSV2/V3 NFSv4.x/pNFS
S Cache fs operations Cache fs callbacks
File Content layer Cache Inode SAL Cache Inode UP
fs operations 1 fs callbacks I
File System Abstraction Layer FSAL UP

Backend (POSIX, XFS, ZFS, PROXY,
GPFS, SNMP, CEPH, HPSS, LUSTRE, VES)
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FSAL: File System Abstraction Layer

The FSAL provides a namespace independent
API, used to address the namespace in upper
layers

Its semantic is close to the NFSv4 one, but allows
easy implementation of NFSv2/NFSv3

Handle based API (lookup, readdir, ...)

Implements namespaces’ specific authentication
mechanisms.

FSAL module is the one and only place where the
native namespace’s API is used
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Available FSALs (1/3)

FSAL/PROXY : API calls are implemented as NFSv4
client requests, turning NFS-Ganesha into a NFSv4 Proxy

FSAL/LUSTRE: provides access to a LUSTRE filesystem
FSAL/XFS: provides access to a XFS filesystem

FSAL/ZFS : this FSAL derives from the fuse based
implementation of ZFS. Links to FUSE were removed to

make ZFS running totally in User Space and being access
via NFS-Ganesha (all in User Space)

FSAL/FUSE : this FSAL makes it possible to bind any
“FUSE ready” project with NFS-Ganesha to generate a
user space NFS daemon capable of exporting the related
namespace (see Ben Martin’s article at
http://www.linux.com/archive/feature/153789)
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Available FSALs (2/3)

FSAL/GPEFS : FSAL developed by IBM to provide
backend to the GPFS filesystem

FSAL/CEPH : FSAL developed by the LinuxBox
company to provide backend to the CEPH filesystem

FSAL/VFS: in linux 2.6.39 it becomes possible to “open
by handle” on VFS managed filesystem (as in XFS and
GPFS). This will make it possible to have a FSAL_VFS
working in a similar way to FSAL_XFS and FSAL_GPFS

FSAL HPSS: “historical” FSAL used to access the
namespace of the HPSS namespace (HPSS is an HSM
from IBM Government Systems, massively used in the
HPC community)

FSALSs can be compiled in both a static and a dynamic
way. In this later case, the nfs-ganesha daemon “dlopens”
the shared library as it starts.
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Available FSALs (3/3)

* Coming soon (2Q2012)

— FSAL/EXOFS : will provide access to the EXOFS
filesystem. This is a requirement for implementing
pNFS/OSD2

* pNFS OSD layout will be part of this
feature

— FSAL API extension

Designed to manage FS specific feature
(snapshots, non POSIX attributes (generation
number, creation time, version), ...)
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What is specific to Ganesha

* NFS-Ganesha provides access to xattr in both NFSv3 and
NFSv4,

— Regular use of OP4_OPENATTR for client who uses it (Solaris)

— Use of ‘.xattr.d’ ghost directory in NFSv3 and NFSv4
 If a file dir/foo exists, then its attributes are accessed in dir/.xattr.d.foo

— Example (on top of FSAL_HPSS)

# 1s .xattr.d.file/

bitfile_id class_of_service ns_handle storage_levels type
# cat .xattr.d.file/storage_levels

Level 0 (disk) : 0 bytes

Level 1 (tape): 209715200 bytes

# cat .xattr.d.file/class_of_service

18
— Extended attributes can be set/modify/remove as files as well
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Things to be completed...

NFSv4 delegation support
NFSv4.1 backchannels (under development)

Complete pNFS implementations
— OSD2 support scheduled with FSAL_EXQOFS
— New LUSTRE layout ?

Miscellaneous NFSv4.1 features
— Directory delegations (when supported by the client)

Asynchronous metadata management
RPC/RDMA support
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Open Source Collaborations

* Since early 2010, several companies started to
collaborate to NFS-Ganesha

— IBM was the first company to come in early 2010

— LinuxBox (Ann Harbor, MI, US) joined later in
4Q2010

— Panasas joined the community in 2011

* OpenSource development and collaboration is a
great chance for the project.

* Help is always welcome. If you are interested in
NFS-Ganesha, just join us :-)
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What you need to remember about this topic ;-)

NFS-Ganesha is a NFS server. It supports NFSv2,
NFSv3, NFSv4 and NFSv4.1 (with pNFES)

NFS-Ganes|
NFS-Ganes|
NFS-Ganes
NFS-Ganes|

ha runs fully in User Space

ha is designed to be generic via FSAL
ha scales on the hardware

na has several backends

NFS-Ganes

ha uses huge caches (up to tens of

millions of entries)

NFS-Ganesha has a very layered architecture

NFS-Ganesha is massively multi-threaded

OpenSource community is very active.
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Where to download NFS-Ganesha?
* NFS-Ganesha is available under the terms of the
[LGPLv3 license

* NFS-Ganesha is hosted on SourceForge:
— Project homepage

— Download page
* http://sourceforge.net/projects/nfs-ganesha/files

— Maliling lists

Git access
git clone git@github.com:phdeniel/nfs-ganesha.git
git clone http://phdeniel@github.com/phdeniel/nfs-ganesha.git
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