NFS-Ganesha,
a NFS server in User Space

Philippe Deniel (philippe.deniel@cea.fr)

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA

The needs behind NFS-Ganesha

* Provide a NFS Interface to services that are
accessible in User Space and that provide
data organized as “tree namespaces”

* Provide an efficient caching device for data
and metadata

* Provide a scalable product, with as few
bottlenecks as possible

* Provide generic support to various
namespaces

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA

NFS-Ganesha and the TERA compute center

NFS-Ganesha is used via NFSv3 in a
supercomputing environment, in front of
compute clusters since 01/2006

— About 5000 different clients (TERA10 compute
cluster + TERA100 compute cluster)

— heavy load (parallel MPI based simulation code)
The daemon is very stable and scales well on
new machines

— Takes benefit of multi-cores/multi-sockets systems

— Takes benefit of system with a large amount of
memory

Plan to step to NFSv4 with krb5i authentication

Plan to use pNFS with NFS-ganesha by the end
of 2012 on production systems

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA

Supported protocols

* Currently, NFS-Ganesha supports
— NFSv2 / MOUNTV1
— NFSv3 / MOUNTv3 / NLMv4
— RQUOTAvVI1 and RQUOTAv2
— NFSv4.0

— NFSv4.1

* pNFS’s layout file model is supported

* Other layouts to be coming soon (OSD layout used
with exofs)

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA 4

User Space is a nice place ;-)

* Running in User Space makes many things
easier.

— Security Managers (like Kerberos) reside in User
Space, they can be accessed directly via GSSAPI
(no need for “rpc_pipefs™)

— ID mappers (NIS, LDAP) reside in User Space,

they can be accessed directly (the daemon is
linked with libnfsidmap)

— Less constraints for memory allocation than in
kernel space, managing huge pieces of memory is
easy

— When developing in User Space, you won't
(usually) crash the kernel

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA

Modular architecture

* Some layers make the « core » of the architecture:

RPC Layer : implements ONC/RPCv2 and RPCSEC_GSS (based on libtirpc)

FSAL : File System Abstraction Layer, provides an API to generically address
the exported namespace

Cache Inode: manages the metadata cache for FSAL. It is designed to scale to
millions of entries

File Content Cache: manages the data cache for the FSAL entries

Log management: one API for internal logging (in files) and remote logging (via
syslog API)

Memory allocation and management: NFS-Ganesha do not rely on malloc/free
but allocates a big chunck of memory at startup and manages it on its own. This

is done by using pre-allocated structures and blocks of memory managed as
“Buddy Blocks”

Hash Table: provides a Red-Black Tree based hash table to provide associative
addressing to internal structure. This layer is widely used to build various cache,
including the metadata cache.

FSAL UP / Cache Inode UP: provides the daemon with a way to be notified by
the FSAL that changes have been made to the underlying FS outside Ganesha.
These information is used to invalidate or update the Cache Inode.

* Each layer has a well defined API. It can be modified (e.g. to
implement a different cache policy) without impacting the other
modules

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA

Xneg Aai v P]\/II'LB

n
]
7]
—
=
O 7
o0
g* B0
; -
=)
<
=

The modules within NFS-Ganesha

clients requests

Network Forechannel
Network
RPC Dispatcher
P Backchannel
Dup Req Layer RPCSEC_GSS
Mount V1/V3
o NLM, RQUOTA NFSV2/V3 NFSv4.x/pNFS
S Cache fs operations Cache fs callbacks
File Content layer Cache Inode SAL Cache Inode UP
fs operations 1 fs callbacks I
File System Abstraction Layer FSAL UP

Backend (POSIX, XFS, ZFS, PROXY,
GPFS, SNMP, CEPH, HPSS, LUSTRE, VES)

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA

sd baThsalH

FSAL: File System Abstraction Layer

The FSAL provides a namespace independent
API, used to address the namespace in upper
layers

Its semantic is close to the NFSv4 one, but allows
easy implementation of NFSv2/NFSv3

Handle based API (lookup, readdir, ...)

Implements namespaces’ specific authentication
mechanisms.

FSAL module is the one and only place where the
native namespace’s API is used

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA 8

Available FSALs (1/3)

FSAL/PROXY : API calls are implemented as NFSv4
client requests, turning NFS-Ganesha into a NFSv4 Proxy

FSAL/LUSTRE: provides access to a LUSTRE filesystem
FSAL/XFS: provides access to a XFS filesystem

FSAL/ZFS : this FSAL derives from the fuse based
implementation of ZFS. Links to FUSE were removed to

make ZFS running totally in User Space and being access
via NFS-Ganesha (all in User Space)

FSAL/FUSE : this FSAL makes it possible to bind any
“FUSE ready” project with NFS-Ganesha to generate a
user space NFS daemon capable of exporting the related
namespace (see Ben Martin’s article at
http://www.linux.com/archive/feature/153789)

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA 9

Available FSALs (2/3)

FSAL/GPEFS : FSAL developed by IBM to provide
backend to the GPFS filesystem

FSAL/CEPH : FSAL developed by the LinuxBox
company to provide backend to the CEPH filesystem

FSAL/VFS: in linux 2.6.39 it becomes possible to “open
by handle” on VFS managed filesystem (as in XFS and
GPFS). This will make it possible to have a FSAL_VFS
working in a similar way to FSAL_XFS and FSAL_GPFS

FSAL HPSS: “historical” FSAL used to access the
namespace of the HPSS namespace (HPSS is an HSM
from IBM Government Systems, massively used in the
HPC community)

FSALSs can be compiled in both a static and a dynamic
way. In this later case, the nfs-ganesha daemon “dlopens”
the shared library as it starts.

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA 10

Available FSALs (3/3)

* Coming soon (2Q2012)

— FSAL/EXOFS : will provide access to the EXOFS
filesystem. This is a requirement for implementing
pNFS/OSD2

* pNFS OSD layout will be part of this
feature

— FSAL API extension

Designed to manage FS specific feature
(snapshots, non POSIX attributes (generation
number, creation time, version), ...)

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA 11

What is specific to Ganesha

* NFS-Ganesha provides access to xattr in both NFSv3 and
NFSv4,

— Regular use of OP4_OPENATTR for client who uses it (Solaris)

— Use of ‘.xattr.d’ ghost directory in NFSv3 and NFSv4
 If a file dir/foo exists, then its attributes are accessed in dir/.xattr.d.foo

— Example (on top of FSAL_HPSS)

1s .xattr.d.file/

bitfile_id class_of_service ns_handle storage_levels type
cat .xattr.d.file/storage_levels

Level 0 (disk) : 0 bytes

Level 1 (tape): 209715200 bytes

cat .xattr.d.file/class_of_service

18
— Extended attributes can be set/modify/remove as files as well

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA 12

Things to be completed...

NFSv4 delegation support
NFSv4.1 backchannels (under development)

Complete pNFS implementations
— OSD2 support scheduled with FSAL_EXQOFS
— New LUSTRE layout ?

Miscellaneous NFSv4.1 features
— Directory delegations (when supported by the client)

Asynchronous metadata management
RPC/RDMA support

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA 13

Open Source Collaborations

* Since early 2010, several companies started to
collaborate to NFS-Ganesha

— IBM was the first company to come in early 2010

— LinuxBox (Ann Harbor, MI, US) joined later in
4Q2010

— Panasas joined the community in 2011

* OpenSource development and collaboration is a
great chance for the project.

* Help is always welcome. If you are interested in
NFS-Ganesha, just join us :-)

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA 14

What you need to remember about this topic ;-)

NFS-Ganesha is a NFS server. It supports NFSv2,
NFSv3, NFSv4 and NFSv4.1 (with pNFES)

NFS-Ganes|
NFS-Ganes|
NFS-Ganes
NFS-Ganes|

ha runs fully in User Space

ha is designed to be generic via FSAL
ha scales on the hardware

na has several backends

NFS-Ganes

ha uses huge caches (up to tens of

millions of entries)

NFS-Ganesha has a very layered architecture

NFS-Ganesha is massively multi-threaded

OpenSource community is very active.

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA 15

Where to download NFS-Ganesha?
* NFS-Ganesha is available under the terms of the
[LGPLv3 license

* NFS-Ganesha is hosted on SourceForge:
— Project homepage

— Download page
* http://sourceforge.net/projects/nfs-ganesha/files

— Maliling lists

Git access
git clone git@github.com:phdeniel/nfs-ganesha.git
git clone http://phdeniel@github.com/phdeniel/nfs-ganesha.git

Connectathon 2012, February 20-24 2012, Santa Clara, CA, USA 16

http://nfs-ganesha.sourceforge.net/
mailto:nfs-ganesha-devel@lists.sourceforge.net
mailto:nfs-ganesha-support@lists.sourceforge.net
mailto:nfs-ganesha-announce@lists.sourceforge.net
mailto:git@github.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

