
CIFS Unix/POSIX
Extensions

An update ...

Steve French

Filesystem Architect - IBM LTC
Samba team

Linux CIFS maintainer ...

Legal Statement
This work represents the views of the author and does not
necessarily reflect the views of IBM Corporation.
The following terms are trademarks or registered trademarks of
International Business Machines Corporation in the United States
and/or other countries: IBM (logo), A full list of U.S. trademarks
owned by IBM may be found at
http://www.ibm.com/legal/copytrade.shtml.
Linux is a registered trademark of Linus Torvalds.
Other company, product, and service names may be trademarks
or service marks of others.

Who Am I?
• Author and maintainer of Linux cifs

network file system, one of larger
Linux file systems

• Architect for File Systems/NFS/Samba
in IBM LTC

• Design/Developed various network file
systems since 1989

• Member of the Samba team, coauthor
of CIFS Technical Reference and
former SNIA CIFS Working Group chair

Outline
 SMB/CIFS Lives ... A short history
 New developments:

− Unix/Linux Extensions continue to
improve

− SMB2
 Unix Extensions

− Protocol status
− Problematic file system operations

 Next Steps

Rebirth of SMB?

 Unix Extensions continue to be improved
and implemented in various clients / servers

 Release of Vista (early 2007) included new
default Network File System protocol: SMB2

 Prototype Implementations of SMB2 in
Samba 4 by late 2006 (and Wireshark)

History of SMB/CIFS
 Birth of SMB/CIFS:
Dr. Barry Feigenbaum
et al of IBM
(published 1984 IBM
PC Conf), continued
by Intel, 3Com,
Microsoft and others

 Became the default
for DOS, Windows,
OS/2, NT and various
other OS.

 Evolved through
various “dialects”

Happy 23rd Birthday!

New POSIX Extensions

 Share Encryption
 Proxy Capability
 Very large reads/writes

Features under Discussion
 Parallel CIFS
 Directory Caching
 Alternative transports
 API for common tasks
 Common “standard” mount

options
− make automount easier when mixed

Unix/Linux clients

SMB2 Under the hood
 Not the same as CIFS

but ... still reminiscent
of SMB/CIFS

− Same TCP port (445)
− Small number of

commands (all new)
but similar
underlying infolevels

− Similar semantics

SMB2 vs. SMB/CIFS
 Header better aligned and expanded to

64 bytes (bigger uids, tids, pids)
 0xFF “SMB” -> 0xFE “SMB”
 Very “open handle oriented” - all path

based operations are gone (except
OpenCreate)

 Redundant/Obsolete commands gone
 Bigger limits (e.g. File handle 64 bits)
 Better symlink support
 Improved DFS support
 “Durable File Handles”

Adding Unix Extensions to
SMB2

 SMB2 capability negotiation
− SMB2_GLOBAL_ caps returned on

Negotiation
− Sent on SessionSetup

Other protocols
 SMB/CIFS has more than 80 distinct SMB

commands (Linux CIFS client only needs
to use 21). A few GetInfo/SetInfo calls,
similar to SMB2, have multiple levels

 NFS version 2 had 17 commands (NFS
version 3 added 8 more), but that does
not count locking and mount which are
outside protocol

 NFS version 4 has 37 commands
(dropped some, added 25 more) but
moved locking into core

CIFS Linux (POSIX)
Protocol Extensions

 The CIFS protocol without extensions requires
awkward compensations to handle Linux

 Original CIFS Unix Extension (documented by
HP for SNIA five years ago) was nice 1st step:

− Required only modest extensions to
server

− Solved key problems for POSIX
clients including:

 How to return: UID/GID, mode
 How to handle symlinks
 How to handle special files
(devices/fifos)

POSIX Conformance hard
for original CIFS

CIFS with Protocol Extensions
(CIFS Unix Extensions)

IBM Linux Technology Center

What about SFU approach?

● Lessons from SFU:
● Map mode, group and user (SID) owner fields
to ACLs

● Do hardlinks via NT Rename
● Get inode numbers
● Remap illegal characters to Unicode reserved
range

● FIFOs and device files via OS/2 EAs on system
files

● OK, but not good enough …
● Some POSIX byte range lock tests fail
● Semantics are awkward for symlinks, devices
● UID mapping a mess
● Performance slow
● Operations less atomic and not robust enough
● Rename/delete semantics hard to make reliable

IBM Linux Technology Center

Original CIFS Unix Extensions
 Problem ... a lot was missing:

 Way to negotiate per mount capabilities

 POSIX byte range locking

 ACL alternative (such as POSIX ACLs)

 A way to handle some key fields in statfs

 Way to handle various newer vfs entry
points

–lsattr/chattr
–Inotify
–New xattr (EA) namespaces

IBM Linux Technology Center

Original Unix Extensions Missing
POSIX ACLs and statfs info

smf-t41p:/home/stevef # getfacl /mnt/test-dir/file1
file: mnt/test-dir/file1
owner: root
group: root
user::rwx
group::rw-
other::rwx

smf-t41p:/home/stevef # stat -f /mnt1
 File: "/mnt1"
 ID: 0 Namelen: 4096 Type: UNKNOWN (0xff534d42)
Block size: 1024 Fundamental block size: 1024
Blocks: Total: 521748 Free: 421028 Available: 421028
Inodes: Total: 0 Free: 0

IBM Linux Technology Center

With CIFS POSIX Extensions, ACLs
and statfs better

smf-t41p:/home/stevef # getfacl /mnt/test-dir/file1
file: mnt/test-dir/file1
owner: stevef
group: users
user::rw-
user:stevef:r--
group::r--
mask::r--
other::r--

smf-t41p:/home/stevef # stat -f /mnt1
 File: "/mnt1"
 ID: 0 Namelen: 4096 Type: UNKNOWN (0xff534d42)
Block size: 4096 Fundamental block size: 4096
Blocks: Total: 130437 Free: 111883 Available: 105257
Inodes: Total: 66400 Free: 66299

IBM Linux Technology Center

POSIX Locking

 Locking semantics differ between CIFS and POSIX
at the application layer.
 CIFS locking is mandatory, POSIX advisory.

 CIFS locking stacks and is offset/length
specific, POSIX locking merges and splits and
the offset/lengths don't have to match.

 CIFS locking is unsigned and absolute, POSIX
locking is signed and relative.

 POSIX close destroys all locks.

IBM Linux Technology Center

Protocol changes

 The mandatory/advisory difference in locking
semantics has an unexpected effect.

 READX/WRITEX semantics must change when POSIX
locks are negotiated.
 Once POSIX locks are negotiated by the
SETFSINFO call, the semantics of READ/WRITE
CIFS calls change – they ignore existing
read/write locks.

 POSIX-extensions aware clients probably want
these semantics.

– It's a side effect, but a good one !

IBM Linux Technology Center

Windows client/POSIX interaction
 POSIX clients read/write requests conflict with
Windows locks, but not POSIX locks (Windows
locks are mandatory for POSIX clients).

 Windows clients read/write requests conflict
with both Windows and POSIX locks (both lock
types are mandatory for Windows clients).

 Windows locks are set, unlocked and canceled via
LOCKINGX (0x24) call.

 POSIX locks are set and unlocked via the Trans2
SETFILEINFO call, and canceled via the NTCANCEL
call.

Problematic Operations

NFS not perfect ...
 Some are hard to address (NFS over TCP still

can run into retransmission checksum issues
http://citeseer.ist.psu.edu/stone00when.html)

 Silly rename sideffects

 Byte Range Lock security

 Write semantics

 Lack of open operation lead to weak cache
consistency model

 Most of these issues were addressed with
NFSv4 as Mike Eisler pointed out (but NFSv4
has problems too)

http://citeseer.ist.psu.edu/stone00when.html

CIFS has problems too

 There is an equivalent of
“commit” but it is not as
commonly used (ie to force server
to flush its server side caches and
write to metal)

 No grace period for lock/open
recovery after server is rebooted
(clients can race to reestablish
state)

What makes network file system
developers lives miserable?

 Constraints from network
fs protocol

 Bugs in various servers
that must be worked
around

 Races with other clients
 Recovery after failure
 Long, unpredictable

network latency
 Hostile internet

(security)
 More complex deadlocks

and locking

Don't (always) blame the
protocol ...

 Some problems
are with the
implementation
(e.g. nfs.ko,
cifs.ko) not with
the protocol

 It takes a long
time to get
implementations
right ... current
Linux ones are
still tiny (under
30KLOC)

Beyond POSIX ... Linux
Affinity Scorecard

 Xattrs:

− CIFS: Yes “user.” category only; NFS: no

 POSIX ACLs:

− CIFS: Yes (w/Unix Extensions e.g. Samba, but mapping code
to support Windows server not complete yet).

− NFSv4: No NFSv3:Yes (Linux servers only)

 getlease/setlease fcntl

− Neither CIFS nor NFS clients handle (CIFS protocol and
servers would allow it though)

 lsattr/chflags

− CIFS: yes (not to all servers) NFS: No

 DNOTIFY fcntl (or inotify)

− NFS: No CIFS: No (but protocol & servers would allow)

 O_DIRECT NFS: yes; CIFS: No (but has as mount option for)

NFSv4 or CIFS for Unix?

 NFSv4 client in short term better performing in most (not
all) workloads. Harder to configure for security though
(AD is everywhere)

 With the newer Linux Extensions, CIFS to Samba is a
great alternative and supports various Linux operations
that NFS does not support

 CIFS (the implementation) missing some key features to
catch up with competition

 CIFS will still be necessary for newer Windows until SMB2
support in kernel matures (we need to start now). To
newer Windows servers use of SMB2 would be slightly
better than CIFS

 Need to evaluate adding the Linux/Unix/POSIX extensions
to SMB2 for Samba as we did with CIFS

Acknowledgements

Thanks to the Samba team, members of
the SNIA CIFS technical work group, and
others in analyzing and documenting the
SMB/CIFS protocol and related protocols
so well over the years. This is no easy
task. In addition, thanks to the Wireshark
team and Tridge for helping the world
understand the SMB2 protocol better.
Thanks to Jeremy Allison for helping me
drive better Linux extensions for CIFS.
Thanks to the Linux NFSv4 developers,
the NFS RFC authors, and to Olaf Kirch,
Mike Eisler for making less opaque the
very complex NFSv4 protocol.

Thank you for your time!

IBM Linux Technology Center

More general improvements still
needed in our aging protocol
 These changes were not really Unix or Linux
specific but POSIX apps may have stricter
assumptions

 Full local/remote transparency desired
 Need near perfect POSIX semantics over cifs
 Newer requirements

 Better caching of directory information

 Improved DFS (distributed name space)

 Better Performance

 Better recovery after network failure

 QoS

IBM Linux Technology Center

Where to go from here?

 Discussions on samba-technical and linux-cifs-client mailing lists
 For Linux CIFS Extensions and CIFS: Wire layout is visible in

fs/cifs/cifspdu.h
 CIFS and SMB2 information on MSDN now
 For Open Source contact Tridge about PFIF
 For SMB2, see the Samba 4 source
 Working on updated draft reference document for these cifs protocol

extensions
 See http://samba.org/samba/CIFS_POSIX_extensions.html

