
The Management of Shares

Tom Haynes Doug McCallum
tdh@sun.com Doug.McCallum@sun.com
Sun Microsystems, Inc. Sun Microsystems, Inc.

mailto:tdh@sun.com
mailto:Doug.McCallum@sun.com

 2

Problems

• Scalability
• Management

 3

Scalability – Root of All Evil

• share(1M) and sharetab(4)
> Designed for small number of shares

>Can not share subdirs
>Disks were rare

> Actions were rare
>Shares occur at boot
>Sharetab accessed on mounts

 4

/etc/dfs/sharetab

• Needed to be persistent
• Kernel memory was tight
• Let's put in /etc!
• By the way, it should really be read-only.

> We have cases where customers modify it, expecting
shares to come online

 5

Management – Designed for NFS

$ more /etc/dfs/fstypes
nfs NFS Utilities
autofs AUTOFS Utilities
cachefs CACHEFS Utilities

• autofs and cachefs are no-ops
• Native CIFS implementation is on the way
• ZFS shares not stored in /etc/dfs/dfstab

 6

sharemgr
Improved file share management

• Introduces concept of share groups
• Integration with SMF
• Extensible via plugin modules
• Fully scriptable CLI-based management
• CLI-based command for managing protocol

separate from shares

 7

Share groups

• Named groups hold collection of shares
• Configuration at the group level

> common configuration properties
> enable/disable by group

• Share level override of properties
• Group “default” for backward compatibility
• Group “zfs” provides handle to ZFS managed

shares

 8

Integration with SMF

• Each group is implemented as an SMF service
instance
> instances can start/stop in parallel
> configuration properties stored in SMF repository
> new service instance created for each group

• ZFS shares started via SMF but configuration is
stored in ZFS properties
> dataset with a “sharenfs” property appears as sub-group
> there is a single “zfs” service instance

• Protocol services depend on the group services

 9

Share groups and adding shares
 $ sharemgr create homedirs

 $ sharemgr set -P nfs -p nosuid=true homedirs

 $ sharemgr add-share -s /export/home/john homedirs

 $ sharemgr add-share -s /export/home/bill homedirs

 $ sharemgr show -vp homedirs

 homedirs nfs=(nosuid=true)

 /export/home/john

 /export/home/bill

 $ svcs group

 online 13:00:09 svc:/network/shares/group:zfs

 online 13:00:17 svc:/network/shares/group:default

 online 14:05:04 svc:/network/shares/group:homedirs

 10

Adding security to “homedirs”
$ sharemgr set -P nfs -S sys -p rw=“*” ro=rohost homedirs

$ sharemgr show -vp homedirs

 homedirs nfs=(nosuid=true) nfs:sys=(rw=* ro=rohost)

 /export/home/john

 /export/home/bill

$ share

 -@homedirs /export/home/john sec=sys,rw,ro=rohost,nosuid “”

 -@homedirs /export/home/bill sec=sys,rw,ro=rohost,nosuid “”

 11

Old school still works
$ share -F nfs -o sec=sys,rw,ro=rohost /data

$ share

 -@homedirs /export/home/john sec=sys,rw,ro=rohost,nosuid “”

 -@homedirs /export/home/bill sec=sys,rw,ro=rohost,nosuid “”

 - /data rw “”

$ sharemgr show -vp

 default nfs=()

 /data nfs=() nfs:sys=(rw=* ro=rohost)

 homedirs nfs=(nosuid=true) nfs:sys=(rw=* ro=rohost)

 /export/home/john

 /export/home/bill

mailto:-@homedirs

 12

ZFS shares (assume pool “data”)
$ zfs create data/dirs

$ zfs create data/dirs/user1

$ zfs create data/dirs/user2

$ zfs set sharenfs=on data/dirs

$ sharemgr show zfs

 zfs

 data/dirs nfs=()

 /data/dirs

 /data/dirs/user1

 /data/dirs/user2

 13

Disabling/Enabling a Share Group
$ sharemgr list -v

 default enabled nfs

 zfs enabled nfs

 homedirs enabled nfs

$ sharemgr disable homedirs

$ sharemgr list -v

 default enabled nfs

 zfs enabled nfs

 homedirs disabled nfs

$ sharemgr enable homedirs

 sharemgr list -v

 default enabled nfs

 zfs enabled nfs

 homedirs enabled nfs

 14

Future of sharemgr

• Tighter Integration with ZFS
> ZFS will use sharemgr API

• CIFS Server Integration
> CIFS protocol plugin is being prototyped
> sharemgr API needs enhancements to fully support

• Can not process share groups in parallel
> File lock on /etc/dfs/sharetab
> We'll fix this one by the end of the presentation.

 15

Case Study – unshareall(1M)
$ file `which unshareall`

/usr/sbin/unshareall: executable /sbin/sh script

• Removes all shares from the sharetab

 16

Old implementation
 59 for i in $fsys

 60 do

 61 for path in `sed -n "s/^\([^]*\)[]*[^]*[]*${i}.*/\1/p" /etc/dfs/sharetab`

 62 do

 63 /usr/sbin/unshare -F $i $path

 64 done

 65 done

 17

Cost

• Currently reads the sharetab 3 times
> Due to the sed run against $fsys

• Causes N forks
• Causes the sharetab to be read N times
• Has to rewrite the sharetab N times

 18

With sharemgr

 50 if ["$fsys"] # for each file system ...

 51 then

 52 fsys=`echo $fsys|tr ',' ' '`

 53 for i in $fsys

 54 do

 55 /usr/sbin/sharemgr stop -P $fsys -a

 56 done

 57 else # for every file system ...

 58 /usr/sbin/sharemgr stop -a

 59 fi

 19

Cost

• Does not read the sharetab per fstype
• Can cause 3 forks or just 1
• Causes the sharetab to be read N times
• Has to rewrite the sharetab N times

 20

What if we got the sharetab off disk?

• In memory, no need to read/rewrite N times

 21

Scalability: shares in the wild

• ZFS testing is driving larger share sizes
• Numbers of shares on jurassic

> 12 shares before ZFS
> 300 shares with first introduction
> 1300 shares a week later

 22

In Kernel Sharetab
Improved share storage

• Scalability
> Want to kick off share groups in parallel
> Do not want to hit disk to authenticate a NFS request

• Portability
> Want a solution for CIFS

• Ownership
> Kernel should own shares

 23

Design Considerations

• Sharetab has to be persistent when power is on
> Used to be nuked on boot
> Can't put sharetab in user space of mountd

> It can be restarted

• Do not want it to be protocol specific
> Mountd connotates NFSv2/3

• No clue what 3rd party applications are doing with
/etc/dfs/sharetab

 24

More Design Considerations

• ZFS wants to delegate filesystem creation to non-
root users
> Security

> ZFS uses ACLs for security, not RBAC
> Really do not want to use setuid scripts/programs

> Regular file is owned by root

• Want to remove file locks on /etc/dfs/sharetab

 25

Pseudo-FS implementation

• Store the shares in the kernel
> Hash tables on path name

• Create a new module sharefs
• Sharemgr is the only application allowed to write

> ZFS has to call into sharemgr
> Sharemgr uses a syscall to pass shares

• Readers access a psuedo-fs: /etc/dfs/sharetab

 26

GFS for code reuse

• ZFS, objfs, and ctfs use gfs
• Abstract framework for pseudo-fs

> vfs and vnode ops call into gfs
> gfs handles generic tasks
> Calls into code specific routines

uts/common/fs/gfs.c
uts/common/sys/gfs.h

 27

Future work

• Get share groups into memory
> Large host lists not shared

• API to get shares
> Extend sharemgr to get shares from kernel
> File I/O is sole published means of access

• Callbacks to inform consumers of changes
> Currently, consumers periodically stat the file

Tom Haynes
tdh@sun.com

Questions

