
Parallel NFS (pNFS)

Garth Goodson

Garth Goodson, Network Appliance, Feb. 2005

Introduction

�Proposition:
– Extend NFSv4 to support data parallelism

�Goals:
– Remove single server bottleneck

– Standardize client interface for parallel data access

– Meet needs of HPC, and Linux cluster communities

�Leverage NFSv4 implementations
– Add small set of protocol extension (pNFS)

– Provide protocol for parallel data access by clients

Garth Goodson, Network Appliance, Feb. 2005

Background

�Started as discussion at CITI Dec. 2003

�Since then many informal meetings

�Major industry interest
– Panasas, EMC, Sun, IBM, NetApp, …

�Introduced to NFSv4 WG Nov. 2004
– Problem statement

– Requirements document

– Operations proposal

Garth Goodson, Network Appliance, Feb. 2005

Parallel NFS (pNFS)

�Separates data and metadata accesses
– Standardized metadata protocol
– Different variants for storage access protocol

• Files, Blocks, Objects

�Files striped across multiple servers
– High aggregate bandwidth
– Data can be accessed in parallel (for a single file)
– Should allow for multiple backend storage protocols

�Standardized client
– Proposed as IETF NFSv4 minor version
– Can fall back to regular NFSv4
– Should promote interoperability

Garth Goodson, Network Appliance, Feb. 2005

pNFS Architecture

�pNFS metadata protocol
– Standardized NFSv4.x

�Storage-access protocol
– files, objs, blocks

�Data-management protocol
– not standardized

pNFS protocol

Data

management

protocol

Storage-access

protocol

Metadata

Server

Data Servers

Client

Garth Goodson, Network Appliance, Feb. 2005

pNFS Requirements

�Scalability
– Extend parallelism to client

– Directories are not distributed, files are

�Interoperability
– Client must be able to fall back to standard NFSv4

– Server must support standard NFSv4 clients

– Storage-access protocols must be well-defined

�Concurrent-sharing
– Shared direct access to storage by multiple clients

– Not further addressing caching/coherency

Garth Goodson, Network Appliance, Feb. 2005

pNFS Requirements

�Error recovery
– Should be able to fall back to something ‘simple’

• At the cost of performance

�Security
– Should be comparable to NFSv4 security

– Files protocols can use V4 w/o impacting security

– Other protocols control security outside of V4 spec

• Object protocols can use capabilities

• Block protocols must rely on SAN-based security
– Changes security model to include client

Garth Goodson, Network Appliance, Feb. 2005

pNFS metadata protocol extensions

�A handful of new ops for manipulating layouts
– LAYOUTGET, LAYOUTCOMMIT, LAYOUTRETURN

�Some ops for mapping devices to IDs
– GETDEVICEINFO, GETDEVICELIST

�A few attributes for determining pNFS support
– LAYOUT_CLASSES, LAYOUT_TYPE, LAYOUT_HINT

�And a callback
– CB_LAYOUTRECALL

�Also, IANA consideration for defining types…

Garth Goodson, Network Appliance, Feb. 2005

What is a layout?

�Layouts define the data mapping to the client
– E.g., enumerates servers data is mapped across

�Layout based on storage access protocol used
– May be small/static for file/obj-based protocols

– May be large/dynamic for block-based protocols

– Identified by class and type (sub-class)

union pnfs_layout4 switch (pnfs_layoutclass4 class) {

case LAYOUT_FILES_NFSV4:

pnfs_nfsv4_layouttype4 file_layout;

default:

opaque layout_data<>;

};

Example:

Garth Goodson, Network Appliance, Feb. 2005

Layouts

�Layouts may be delegated to clients

– Not for caching, for out-of-band data modification

– Sharing mode specified in LAYOUTGET

•IOMODE: READ/WRITE/RW

•SHAREMODE: SHARED/EXCLUSIVE

– Layout updated on LAYOUTCOMMIT

• Can also update size attribute (EOF)

• Ensures size attribute is consistent

– Layouts may be recalled (CB_LAYOUTRECALL)

– Return layout with LAYOUTRETURN

Garth Goodson, Network Appliance, Feb. 2005

Basic operation flow

1. OPEN

2. LAYOUTGET
3. READ/WRITE

4. LAYOUTCOMMIT

5. LAYOUTRETURN

6. CLOSE

Metadata Server Data Servers

Client

Garth Goodson, Network Appliance, Feb. 2005

Our prototype

�Basic premise: start simple
– Basic prototype to show parallel access

– Not concerned w/locking, delegations, security, etc.

�Based on pNFS draft operations proposal

�Using NFSv4 files storage-access protocol

�Implemented in NetApp filer

�Sun involved in client prototype work
– Interoperability demonstrated at connectathon

Garth Goodson, Network Appliance, Feb. 2005

Prototype: requirements

�NFSv4 files based layout for striped data

�Single OPEN/REMOVE at the metadata server

�Size attribute made visible on LAYOUTCOMMIT

�Simple mgmt protocol, using stock NFSv4

Garth Goodson, Network Appliance, Feb. 2005

Prototype: non-requirements

�ACLs on data servers

�Mandatory locking on data servers

�Implicit lease renewal based on data I/Os

�Immediate reflection of attrs based on I/Os

Garth Goodson, Network Appliance, Feb. 2005

Prototype: file layout definition

�Layout is an array of device layouts & stripe size
– dev_id names data server (shorthand uint32)

– fh names file on data server

– stateid state required for data access, set to all 0’s

struct pnfs_nfsv4_layout {

pnfs_deviceid4 dev_id;

nfs_fh4 fh;

stateid4 stateid;

};

struct pnfs_nfsv4_layouttype4 {

uint64_t stripe_size;

pnfs_nfsv4_layout dev_list<>;

};

Garth Goodson, Network Appliance, Feb. 2005

Prototype: handling of file layouts

�Option on filer sets default layout
– Stripe size and set of data servers

– Easily changed

– Inherited by metadata file upon creation

�Layout stored as named attr on metadata file
– Default layout copied into named attr on creation

– Metadata file is otherwise empty, w/correct attrs

�Client should not modify layout
– In future, restriping may modify layout

�Delegated layouts not yet supported

Garth Goodson, Network Appliance, Feb. 2005

Prototype: storage access protocol

�Storage access uses standard NFSv4
– No OPEN, LOOKUP, SETATTR, etc.

– Only READ and WRITE/COMMIT at data servers

– FH and stateid returned in layout

�GETDEVICEINFO translates dev_id to address

– For prototype simplicity, dev_id stores IP address

�GETDEVICELIST returns list of default dev_ids

– Based on current default layout

Garth Goodson, Network Appliance, Feb. 2005

Prototype: management protocol

�Responsible for managing state
– Setting attrs, creating state, removing files, etc.

�Current metadata ops that invoke mgmt
– OPEN w/create

– REMOVE

– SETATTR of size

– LAYOUTCOMMIT

�Future:
– ACLs, mandatory locks, delegated layouts, etc.

Garth Goodson, Network Appliance, Feb. 2005

Prototype: management protocol

�OPEN w/create creates state on data servers

– Performs create on metadata server

• Inherits default layout (stripe size + data servers)

– Creates data files on remote data servers

• Data files stored in root dir, named by inode #

• Data files created w/same mode, uid/gid, size

• Returns filehandles (stateid in future)

– Creates layout as named attr on metadata server

• Stores layout with returned FHs

Garth Goodson, Network Appliance, Feb. 2005

Prototype: management protocol

�REMOVE removes state on data servers

– Opens layout stored on metadata server

– Issues REMOVEs for each data file

– Metadata server removes layout and local file

– Future: async REMOVEs to data servers?

�SETATTR may need to truncate/grow data files
– SETATTRs that affect size are sent to data servers

Garth Goodson, Network Appliance, Feb. 2005

Prototype: management protocol

�LAYOUTCOMMIT ensures size is consistent

– Currently EOF flag and length provided as args

– Prototype uses this as a hint

– If EOF is set and len is > metadata file length

• Metadata server issues SETATTRs of new length

• This may sparsely extend data file(s)

– Can use to update mtime

– Future: handle error cases

• E.g., server failures before LAYOUTCOMMIT

Garth Goodson, Network Appliance, Feb. 2005

Standardization

�Just moved into NFSv4 working group
– Still at beginning of process (individual drafts)

– At least 1½ years to standardization

�Focus on NFSv4 files-based protocol
– Easiest to get through WG (wrt. security, etc…)

– Design must support multiple storage protocols

�Requires
– Thorough understanding of error conditions

– Fully specified files-based access protocol

– Working strawman implementation

Garth Goodson, Network Appliance, Feb. 2005

For more information

�NFSv4 WG mailing list
– http://www1.ietf.org/mail-

archive/web/nfsv4/current/index.html

�Current proposals & drafts (from CMU’s pNFS)
– http://www.pdl.cmu.edu/pNFS/

�My contact info:
– Garth Goodson

– Network Appliance

– goodson@netapp.com

