

Secure Network Access

Alper E. YEĞİN DoCoMo USA Labs March 6th, 2002

Network Access

• Components of connectivity

- Link-layer connectivity
- IP address configuration
- On-link forwarding
 - ARP
 - Neighbor Discovery
- Off-link forwarding
 - Gateway
 - Router discovery (stateless)
 - DHCP (stateful)
 - Manual configuration

Secure Network Access

- Only authenticated and authorized clients gets access
 - Important for enterprise networks
 - Definitely for public access networks
- Public access networks:
 - More challenging
 - Network also has to prove its identity to clients
 - Wireless technologies, possible malicious nodes/networks everywhere
- Authentication (not privacy)

Current Technologies

- Door locks
- HTTP-based schemes
 - Mobilestar
- PPP with EAP
- 802.1x (EAP)

Current Technologies - Issues

- Door locks
 - Wireless network leaks
 - No doors on street!
- HTTP-based schemes
 - Requires user intervention
- PPP
 - Works only on point-to-point links
 - Additional encapsulation
- 802.1x
 - Only works for 802 family links
 - Not general deployment yet

PANA

- Protocol for Carrying Authentication for Network Access
- To define a network-layer carrier for authentication and basic authorization process
 - Link-layer independent
- Part of ALL-IP architecture

PANA

- Define the carrier, pick the payload
 - Like Mobile IPv4 registration request carries
 MN-FA authentication extension
 - Possible payloads
 - EAP
 - MN-AAA authentication extension of Mobile IPv4
- Like a front-end to AAA

PANA

PANA WG Plan

- Requirements and terminology
- Usage scenarios
- Framework
- Interactions with PPP and 802.1x
- Protocol design
- MIB definitions

Requirements Highlights

- draft-ietf-pana-requirements-01
- Authentication and (simple) authorization
- Mutual authentication
- Authentication backend
- Just the carrier, pick an already defined payload (security mechanism/protocol)
- Accounting, access control, mobility management outside the scope
- Multi-access links, clients
- Efficiency

Link Security

- PANA likely to do key distribution
- Data traffic can be authenticated and encrypted by using these keys with
 - IPsec
 - Link-layer protocols

Solutions

- Too soon to discuss at IETF, but:
 - SNARD: Alper E. Yegin, Xiaoning He, Carl
 Williams, Lisa Yiqun Lin, Satomi Okazaki
 - EAP over ICMP: George Tsirtsis
 - EAP over UDP: Paal Engelstad

SNARD

- Secure network access using router discovery and AAA: draft-yegin-unap-snard-00
- Carrier:
 - Router discovery
 - Router solicitations from PaC
 - Router advertisements from PAA
 - PAA located on the access router
- Payload:
 - MN-AAA authentication extension (RFC3012)
 - AAA registration keys for Mobile IP: draft-ietfmobileip-aaa-key-08
 - Generalized key distribution extensions for Mobile IP: draft-ietf-mobileip-gen-key-01
 ¹³ Secure Network Access

- RS*: RS + PaC_id + MN-FA_key_request + Chal_PAA + Chal_PaC + MN-AAA_auth_ext
- RA*: RA + PAA_id + MN-FA_key_reply + Chal_PaC + Chal_PAA + MN-FA_auth_ext

Async Re-authentication

- At any time PaC can challenge the PAA by sending a RS*
- PAA can kick start this challenge process by sending a RA* with 0 or low lifetime

Malicious Networks

Secure Network Access

Advantages

- A natural extension to existing protocols
 - Semantically fit
- A device goes through router discovery anyways (efficieny)
- A generic IP solution
 - Can be used for IPv4, IPv6, Mobile IPv4, Mobile IPv6
- Optimizations by creating local security associations

PANA+

- Enhanced authorization
 - Network access parameters
- Go beyond initial client authentication for network access
 - Secure neighbor discovery, ARP
 - SNARD will deal with this using key distribution
 - Secure router discovery
 - SNARD already takes care of this!

Modern Pirates

Questions/comments