
NFS Version 4 Open Source
Project

William A.(Andy) Adamson

Center for Information Technology Integration

University of Michigan

• Sponsored by Sun Microsystems

• Part of CITI’s Linux Scalability project

• IETF reference implementation

• 212 page spec

• Linux and OpenBSD

• Inter-operates with Solaris, Java, Network
Appliance, Hummingbird, EMC implementation

• April 1, 2001 - Linux 2.4 release

NFS Version 4 Open Source Project

• Lots of state

• Compound RPC

• Extensile security added to RPC layer

• Delegation for files - client cache consistency

• Lease based non-blocking byte range locks

• Win32 share locks

• Mountd - gone.

• Lockd, statd - gone

NFS Version 4: What’s New?

• Compound RPC - server state

• Win32 share locks - server and client state

• Delegation - server and client state

• Byte-range locks - server and client state

NFS Version 4 State

• Compound operations often use result of
previous operation as arguments.

• NFS file handle is the coin of the realm

• Current file handle <=> Current working
directory

• Some operations (RENAME) need two file
handles - Save file handle.

Per Thread Global State

• Designed to reduce traffic

• Complex calling interface, complex to parse

• Partial results used

• RPC/XDR layering
– RPC layer does not interpret compound operations

– Additional replay cache for lock mutating ops

– Have to decode to decide which replay cache to use

• Variable length: kmalloc buffer for args and recv

Compound RPC

• Goal is to XDR args directly into RPC buffer and
to allow a variable length receive buffer

• Encode and decode routines not called from RPC
layer

• Considering requesting buffer from RPC layer to
remove one copy

• Decode handlers provide ideal place to handle
common errors

• Use same calling interface for Linux and
OpenBSD

Compound RPC Call Interface

Mount Compound RPC

PUTROOTFH

LOOKUP

GETATTR

GETFH

• Server PseudoFS joins exported sub trees with a
read only virtual file system

• Any client can mount into the PseudoFS

• Users browse the PseudoFS (via LOOKUP)

• Access into exported sub trees based on user’s
credentials and permissions

• Client /etc/fstab doesn’t change with servers
export list

• Server /etc/exports doesn’t need to maintain an
IP based access list

NFS v4 Mount

Mount and the Pseudo File System

NFSv4 Client
/

d

ba

e f

c

g h i

Local FS directory

Pseudo Fs directory

Exported directory

 Pseudo FS

The client boots and mounts a
directory of the Pseudo FS with
the security flavor AUTH_SYS.

User has read-only access to
the Pseudo FS, and traverses
the Pseudo FS until an exported
directory is encountered.

User Creds

The first NFSv4 procedure that acts
on the exported directory causes NFSD
to return the NFS4ERR_WRONGSEC
causing the client to initiate the SECINFO
call to obtain the list of security flavors on
the exported directory.

ba

/

The server boots, parses the /etc/exports
file, and creates the Pseudo FS mirroring
the Local FS up to the exported directories.
The Local FS exported directories are mouted
on their Pseudo FS counterparts.

Local FS

The user’s permissions in the negotiated
security realm determine access to the
exported directory.

Before the first OPEN, the client
initiates a SETCLIENTID to
negotiate a per server unique client
identifier.

NFS client NFSD

kernel

GSSD

kernel

user user

GSSD

Kerberos 5 KDC

8
5

4

3 2

1 6

7

Kerberos 5 Security Initialization

9,10 NFSV4 COMPOUND procedure
5,8 NFSV4 overloaded NULL procedure
1,4,6,7 GSSD RPC interface

9
10

2,3 Kerberos 5 TCP/IP

RPCSEC_GSS

• User-level
– Complete (mostly) Kerberos 5 implementation

– mutual authentication, integrity, privacy

– inter-operates with Solaris

• Kernel
– Kerberos 5

– mutual authentication, no encryption

– user-level daemon, GSSD

– integrated with file system access

– inter-operates with NetApp, Solaris

LIPKEY & SPKM3

• Adding LIPKEY to our user level RPCSEC_GSS

• Sits directly on top of SPKM3

• Enabled mechanism glue code in MIT kerberos 5
– can switch on mechanism and hit SPKM3 calls

• Valicert asn1parser produces DER encode and decode
routines that call SSLeay functions
– doesn’t handle all the necessary semantics (ANY, SEQUENCE

OF SEQUENCE to name a few)

– will have to hand code

• First pass SPKM3 Diffie-Hellman init_sec_context and
accept_sec_context being coded

• Need to associate a file, lock, lockowner, & lease

• Per lockowner lock sequence number

• Server doesn’t own local file system structures

• Hash tables for clients, files, lockowners, locks

• Stateid: handle to server lock state

• Per client state: lock lease

State: Server Locking

• Client owns local file system structures, use
private data areas

• Hash table for lockowners

• Delegation means that the client needs to hold
the same locking state as the server

State: Client Locking

• Lease based locks. No byte range callback
mechanism

– Server defines a lease for all per client lock state

– Server can reclaim all client state if lease not renewed

• OPEN sets lock state which includes a
lockowner (clientid, pid)

• Server returns lock stateid

• Stateid mutating operations are ordered
–OPEN, OPEN_CONFIRM, CLOSE, LOCK, LOCKU,
OPEN_DOWNGRADE

Byte-Range Locking

• NFSv4 tries to join POSIX and Win32 lock
semantics

• Client: lockowner can obtain a byte range lock
and then:

• Upgrade the initial lock (read lock -> write lock)

• Request a change to a sub-range of the initial
lock

Byte-Range Locking

• Sub-range problem: POSIX splits and coalesces
locks, Win32 doesn’t.

• NFSv4 allows for both behaviors, returning
NFS4ERR_LOCKRANGE to signal non-support
of sub-range semantics

• Useful for a client to be able to determine what
type of byte-range locking support exists on a
server

Byte-Range Locking

Sub-Range Problem

Unix NFSv4 Client Windows NFSv4 Server

0 1 2Read lock bytes 0-2

0 1 2Write lock byte 1

0 1 2

0 1 2

Unlock 0-2

Read lock 0,2

Write lock 1

Race condition ! So
don’t do it.NFS4ERR_LOCKRANGE

Write lock fails

Sub-Range Problem

Unix NFSv4 Client Windows NFSv4 Server

0 1 2

Read lock bytes 0-2

Write lock byte 1

0 1 2

Open for write

Write delegation

• Goal is to reduce traffic

• Server decides to hand out delegation at OPEN

• If client accepts, client provides callback

• Many read delegations, or one write delegation

• When client delegates a cached file it handles:
– all locking, share and byte range

– future OPENS

• Client can’t reclaim a delegation without a new
OPEN

• No delegation for directories

Delegation

• Associates delegation with a file

• Delegation state in linked list off file state

• Stateid: separate from the lock stateid

• Client call back path

State: Server Delegation

• Shared problem: OPEN with O_EXCL described
by Peter Braam

• NFSV4 implements WIN32 share locks which
require an atomic OPEN with CREATE

• Linux 2.2.x and Linux 2.4 VFS is problematic

• To CREATE and OPEN a file, three inode
operations are called in sequence

• LOOKUP resolves the last name component

• CREATE is called to create an inode

• OPEN is called to open the file

Linux VFS Change

• Inherent race condition means no atomicity

• We partially solved this problem

• We added a new inode operation which performs
the OPEN system call in one step.

• int xopen(struct file *filep, struct inode *dir_i,
struct dentry *dentry, int mode)

• if the xopen() inode operation is NULL, the
current two step code is used

• NFSv4 OPEN subsumes LOOKUP,
CREATE,OPEN,ACCESS

XOPEN

• Local file system uses uid/gid

• Protocol specifies <username>@<realm>

• No auth type associated with name in ACL

• UNIX username

• Kerberos 5 realm

• PKI realm - X500 or DN naming

• GSSD resolves <username>@<realm> to local
file system representation - currently /etc/passwd

Namespace Issues

• Local file system choices
– Currently ext2

– ACL implementation will determine FS for Linux 2.4

– Ext3, XFS both support local ACL

– Linux developing ACL interface

• Kernel additions and changes
– Crypto

– Atomic OPEN

Open Issues

• April 1, 2001 - full Linux 2.4 implementation,
without ACL’s

• July 1, 2001 - ACL’s added

• Network Appliance sponsored NFSv3/v4 Linux
performance project

What’s Next

http://www.citi.umich.edu/projects/nfsv4

http://www.nfsv4.org

Questions?

