A Sun Microsystems Company

NFS FILE SETS

Mike Eisler

mre@eng.sun.com
SunSoft, Inc.

Theresa Lingutla-Raj

fraj@eng.sun.com
SunSotft, Inc.

Rob Thurlow

thurlow@eng.sun.com
SunSotft, Inc.

CONNECTATHON ‘97

D
%:@ S u nSOft NFS Filesets Slide 2

4 CONTENTS B

e Overview

Goals

Partitions and File Trees

Name Space

Fileset Locking

Administration Utilities

mount re-architecture

caching changes

Eisler, Lingutla-Raj, Thurlow

%::% S u nSOft NFS Filesets

A Sun Microsystems Company

Slide 3

-~

OVERVIEW

e A file set is a collection of files mounted as a file
system by an NFS client

* Things to do with file sets:

- Migrate them
- Replicate them

e Client-side fail over is a basic form of file sets

- The NFS client switches to another server by changing IP addresses
and re-mapping path names to vnodes
- Limits:
- Read-only

- No consistent file handle, so operations done by other clients
can break file identification:
other_client% mv old new

~

Eisler, Lingutla-Raj, Thurlow

D
%:@ S u nSOft NFS Filesets Slide 4

A Sun Microsystems Company

"« File set migration is useful in environments where A

the locations of networked file systems change a lot
(or would if NFS had file set migration)

e Counter-arguments for file set migration

- How often do file systems move really?

- ANSWER: not often, but when they do, it is a pain to update
name services, maps, and also make the users reboot desk-
tops (or get a new URL)

- Why not use clusters?
- ANSWER: Clusters are homogeneous
- ANSWER: Cluster nodes must be “near” to each other

 File set migration is one of the reasons why people
prefer AFS or DCE/DFS (security is the other)

Eisler, Lingutla-Raj, Thurlow

S u nSOft NFS Filesets Slide 5

A Sun Microsystems Company

" VISION: LOCATION INDEPENDENT ADMINISTRATION

Cr

7N

old:/export /data

- _ neW/eXpOrtZ
. ———_ _ /
NFS Client T T - data

\
=~ lexport/data /export2/data
s “ma
..]
System Administrator
server- old server- new
Drag and Drop

- /

Disclaimer: the above vision won't be there in the first phase of NFS File Sets

Eisler, Lingutla-Raj, Thurlow

D
%:@ S u nSOft NFS Filesets Slide 6

A Sun Microsystems Company

4 GOALS B

 No major re-architecture

- local file system

- NFS file system

- Virtual File System switch
- existing NFS protocols

 Ease of administration

* Work with prevalent naming systems

- Don’t invent naming systems

 Make disk caching and file sets cooperate

Eisler, Lingutla-Raj, Thurlow

A Sun Microsystems Company

NFS FILE SETS:
sPartitions
*Transportable File Handles
Virtual Partitions

*File Trees

Mike Eisler
Sunsoft, Inc.

mre@eng.sun.com

S u nSOft NFS Filesets Slide 8

A Sun Mic s Company

4 PARTITIONS B

e server# mount -F ufs /dev/dsk/0 /export/
homeO

o client# mount -F nfs server:/export/home0
/mnt

e /dev/dsk/O contains an inode #, each with a
generation #

* file handles are basically inode#/gen# pairs

 Trivial migration:

- copy partition (/dev/dsk/0) to another server
- change IP address in client’s mount table to new server

Eisler, Lingutla-Raj, Thurlow

///,~§§@Sun80ft

A Sun Microsystems Company

NFS Filesets

Slide 9

-~

TRANSPORTABLE FILE HANDLES h

« file handle is typically:

fsid iIssue

fs

d

inode# of file generation# of file

inode# of exported directory

generation# of exported dire

ctory

~

_

e fsid is typically a UNIX device number + a file system

type

- Even between homogenous systems, the device number is hard to

maintain

« Solution: make fsid a random (64 bit) quantity

- near zero chance of collision

- random number generator uses techniques of RFC XXXX

Eisler, Lingutla-Raj, Thurlow

D
%:@ S u nSOft NFS Filesets Slide 10

A Sun Microsystems Company

4 PARTITION ON DEMAND ISSUE h

 What if the server receiving the partition has no free
slice?

e Solution: Virtual Partition

e Creating a virtual partition on new server:

- create a regular file as large as the incoming partition

- associate the regular file with a slot in a new pseudo device driver

- newfs /dev/pseudo_dsk/slot#

- mount -F ufs /dev/pseudo_dsk/slot#

- Credit for pseudo device driver: Tom Van Baak @Pyramid Technology

A poor man’s vnode stack

Eisler, Lingutla-Raj, Thurlow

%::% S u nSOft NFS Filesets

A Sun Microsystems Company

Slide 11

-~

VIRTUAL PARTITIONS VS FILE TREES

* File Tree: an arbitrary subdirectory of an exported
directory, which can contain files and more
subdirectories

« Advantage of Virtual Partitions

- No more file identify problems
- Compartmentalizes: simple way to do quotas
- Better NFS security

» Disadvantages of Virtual Partition

- Lots of partitions complicates administration
- Fragments space quickly
- File system within file means twice as much code in data path

~

Eisler, Lingutla-Raj, Thurlow

%::% S u nSOft NFS Filesets

A Sun Microsystems Company

Slide 12

i Advantage of File Trees

- Non-invasive to NFS server
- Potential for exporting NFS mounted file systems

» Disadvantage of File Trees

- requires that path names be recorded for possible re-mapping

o Will support both forms:

- Virtual partitions good for write-shared file systems, such as source
trees under source control

- File trees good for (mostly) single-writer file systems, such as home
directories

- Sometimes migration will go from homogeneous to heterogeneous
systems

~

Eisler, Lingutla-Raj, Thurlow

NFS FILE SETS:
Name Space Resynchronization
Locking
Utilities

Theresa Lingutla-Raj
Sunsoft, Inc.

traj@eng.sun.com

D
%:@ S u nSOft NFS Filesets Slide 14

A Sun Microsystems Company

-~

NAME SPACE RESYNCHRONIZATION

» Client detects fileset unavailability after repeatedly
receiving stale filehandle or jukebox error

 Client attempts to obtain new coordinates of the
fileset

- Automounter
- client makes upcall to automounter for latest map information
- automounter consults naming service

- Redirector
- nis updates take time to propagate
- redirector is needed to cover for time lag in name service updates

~

Eisler, Lingutla-Raj, Thurlow

D
%:@ S u nSOft NFS Filesets Slide 15

A Sun Microsystems Company

g NAME SPACE RESYNCHRONIZATION h

Redirector

e establish link between old and new location of fileset

- resides on the server in location symbolically represented as
“REDIRECTOR_LOCATION”

- much like dot-dot symbol implying parent directory
- avoids assumptions of the pathname supported by the server
- e.g. /redirector for Solaris

- is a symlink
- connected to old location by filehandle

- connected to new location by symlink contents
- nfs URL
- e.g. nfs:/Inewserver//newpath

 used in conjunction with naming service

Eisler, Lingutla-Raj, Thurlow

D
%:@ S u nSOft NFS Filesets Slide 16

A Sun Microsystems Company

a NAME SPACE RESYNCHRONIZATION A
Redirector
e example
- filehandle of exported fileset 0x1234
client -------- lookup REDIRECTOR_LOCATION ----> server
client <------- fh for /redirector ------------------mm-ommee - server
client -------- directory /redirector, lookup 0x1234 ---> server
client <-------- fh for /redirector/0x1234 ------------------ server
client --------- readlink /Zredirect/0x1234 ----------------- > server
client <------- nfs.//newserver//newpath ---------------- server

client uses automounter to obtain network address of newserver

Eisler, Lingutla-Raj, Thurlow

D
%:@ S u nSOft NFS Filesets Slide 17

A Sun Microsystems Company

4 FILESET LOCKING A
 Why?

- maintain integrity during transfer

 Requirements

- ease of administration
- efficient locking
- efficient checking

e Design premise
- examine lock state on root of mounted fileset
- extend filehandle to have mounted fileset information

e filehandle format

file system file identifier of the file identifier of the target’s | file identifier of the target’s
identifier target file exported directory mounted directory

- /

Eisler, Lingutla-Raj, Thurlow

D
%:@ S u nSOft NFS Filesets Slide 18

A Sun

Microsystems Company

-~

FILESET LOCKING

* types of lock

- read/write lock
- write lock

e levels of lock

- direct lock
- Indirect lock

* locking a target fileset

- set a direct lock on the root of the fileset

- set an indirect lock on the nodes intervening the root of the fileset and
the exported directory /export

exported directory Zexport
locked directory /export/aa/bb

bb O indicates indirect lock

aa

@® indicates direct lock

~

Eisler, Lingutla-Raj, Thurlow

D
%:@ S u nSOft NFS Filesets Slide 19

A Sun

Microsystems Company

-~

FILESET LOCKING A

* lock testing on every nfs request

- examine mounted directory for lock
- if direct or indirect lock then return NFS3ERR_JUKEBOX

- examine the exported directory for lock
- if direct lock return NFS3ERR_JUKEBOX

- if indirect lock examine nodes between mounted directory and ex-
ported directory. If a node with direct lock is reached then return

NFS3ERR_JUKEBOX

scenario 1 (+ve test) scenario 2 (+ve test) scenario 3 (-ve test)
exported directory Zexport exported directory Zexport exported directory /Zexport
locked directory /export/aa/bb locked directory /export/aa/bb locked directory /export/aa/bb
mounted directory Zexport/aa mounted directory /export/aa/bb/cc mounted directory Zexport/aa/dd
/export

export /export

aa

aa

bb bb

dd

Eisler, Lingutla-Raj, Thurlow

D
%:@ S u nSOft NFS Filesets Slide 20

A Sun Microsystems Company

a FILESET UTILITIES R

 fileset creation tool

- create subdirectory for pathname method or virtual partition for
consistent fh method

- publish fileset in the name space

o fileset deletion tool
- remove fileset and reclaim space on source server

e filleset transmission tool
- lock the fileset on source server

- transfer fileset using rdist
- update name space and setup the redirector on source server
- unshare the fileset on the source server

o fileset reception tool
- setup virtual partition and UFS filesystem on target server

- share fileset

Eisler, Lingutla-Raj, Thurlow

A Sun Microsystems Company

NFS FILE SETS:
Mount Re-architecture
CacheFS work

eLock migration

Rob Thurlow
SunSoft, Inc.

thurlow@eng.sun.com

%::% S u nSOft NFS Filesets

A Sun Microsystems Company

Slide 22

4 MOUNT REWORK h

SVr4 mount code awkward to build on

e /usr/shin/mount -> /usr/lib/fs/$FSTYPE/mount

- fork()/exec() API obvious but inefficient
- Poor results for any MT application
- Cachefs interposition takes a large performance hit and loses control

- Fileset project needs more direct control of mount(2) args
- manual vs. automount to support upcall and interposition

« automountd duplicates much NFS-specific code

- Duplicated code for performance and control (e.g. pingnfs())

- Have to do new work (e.g. failover) and bug fixes in two very different
frameworks

- Need MT-hot repackaging of code in one place for automountd

Eisler, Lingutla-Raj, Thurlow

D
%:@ S u nSOft NFS Filesets Slide 23

A Sun Microsystems Company

4 MOUNT REWORK h

Solution: shared libraries

» Shared library with fs-specific mount knowledge

Split code into new logical groupings:
- premount: collect necessary information (e.g. root filehandle)
- postmount: e.qg. reflect mount in /etc/mnttab
- preunmount: e.g. is server alive?
- postunmount: e.g. /etc/mnttab again

- Filesystems will ship a shared lib containing these entry points
- These routines will handle hierarchical mounts (e.g. cachefs/nfs)

- Programs will call find_entry point() with $FSTYPE and the type of
routine needed to get to fs-specific functions

- find_entry_point() will do dlopen()/dlsym() if not already cached
- mount_hierarchy() provided for simplicity

- automountd will keep several dynamic segments mapped for speed
o /

Eisler, Lingutla-Raj, Thurlow

D
%:@ S u nSOft NFS Filesets Slide 24

A Sun Microsystems Company

4 MOUNT REWORK h

Shared libraries, cont’d

e Shared library with generic mount knowledge
(e.g. /etc/mnttab update)

- Programs will link against this normally
- Static objects will have a private archive to link against
- MT-safe: all /etc/mnttab accesses through this library

 All Solaris filesystems will use common code

- It’s not just a good idea, it's the law
- fork()/exec() support for 3rd party filesystems will be maintained

Eisler, Lingutla-Raj, Thurlow

D
%:@ S u nSOft NFS Filesets Slide 25

A Sun Microsystems Company

4 MOUNT REWORK h

Shared libraries, cont’d

 Code example

int (*premount)(int, char *[],int, struct mountargs **);
int (*postmount)(int, struct mountargs *);

main(int argc, char *argcl])

{
premount = find_entry _point(“ufs”, PREMOUNT);
postmount = find_entry point(“ufs”, POSTMOUNT);
err = mount_hierarchy(argc, argv, premount,
postmount);
exit(err);
}
_ /

Eisler, Lingutla-Raj, Thurlow

D
%:@ S u nSOft NFS Filesets Slide 26

A Sun Microsystems Company

-~

_

CACHEFS REWORK

Plumbing changes

« CacheFS keeps a persistent data/metadata cache

- Stores server name as part of CacheFS organizational data
- /var/cache/jurassic._export_home6 _thurlow: home_thurlow
- Stores file handle for each cached vnode
- We need a way to update this metadata when fileset migration occurs

- This is the same reason failover and CacheFS didn’t play in 2.6

e Solution: cachefsd

- Kernel will upcall to cachefsd to provide new information
- cachefsd will update this itself or via a private system call

* Will look for other opportunities to make CacheFS
Integrate better with NFS

~

Eisler, Lingutla-Raj, Thurlow

D
%:@ S u nSOft NFS Filesets Slide 27

A Sun Microsystems Company

-~

LOCK MIGRATION

 When fileset moves, what happens to locks?

|deal result: client negotiates locks with new server and then drops lock
held on old server

- Would like a grace period on fileset on new server, but likely can’t

get that without protocol change
- Could run into problems with contention from other clients
Non-ideal result: client waits for locks to be dropped before permitting
a particular rnode to be rebound to new server

- Requires that old server keeps providing service for awhile, which
may be reasonable

- Can a client do I/O under these circumstances?

Worst-case result: send SIGLOST to processes which hold a lock on a
migrating fileset

- Yuck! Breaks transparency pretty badly
Possible to represent lock state in future server-to-server protocol
Still in the early stages of thinking about this

~

Eisler, Lingutla-Raj, Thurlow

