Factors Governing Throughputs

(or the search for the perfect client)

Brian Pawlowski beepy@netapp.com

www.netapp.com

This Talk

- **O NFS Benchmarks**
- A simple throughput study
- O Throughput limits and factors affecting them
 - Read and write
 - Options (FDDI, 100BaseT, TCP, UDP and xfer size) and their effect
- **○** Future

NFS Benchmarks

- LADDIS multi-user workloads
 - Configurable, synthetic benchmark
 - Measures only the server
 - Useful to compare vendor offerings
 - Difficult to setup
- O Throughput tests
 - Microbenchmarking of read and write
 - Measures the client and server
 - Most focus on single client results
 - Easy to setup
- User application benchmarking
 - Best predictor for customer
 - Measures the client and server
 - Difficult to setup

My interest?

- O Speed, speed, maximum speed.
- Customers are benchmarking systems during evaluation
 - LADDIS is intractable
 - For some throughput measure is a better predictor of their application performance
- Shooting performance problems at customers
 - Simple throughput tests often suffice
- O Effect of changes being made to NFS?
 - NFS Version 3 introduced async writes, and large transfer sizes
 - TCP becoming the default transport
 - **☞ 100BaseT on the rise**

And finally...

- Network Appliance is a server company
 - At the mercy of client implementations
 - Wants to see increased investment in client performance analysis and tuning
 - Will work with anyone and share data to achieve this
- Start a dialogue on factors governing throughput
- O Encourage default configuration tunings to be optimal
- With 100BaseT ascendant and Gigabit ethernet coming fast, I want to lay groundwork for awesome throughput performance
- O Find better clients!

Experiment you can try at home

- Simulation of a perfect server
 - Export "tmpfs" memory-based file system
 - Reduce operations to cached memory access
- The perfect client?
 - STATE STATE
 - Tunable (and good) read-ahead and write-behind.
- **O Benchmarks**
 - simple_read and simple_write do no work, throw data away, source available
 - awk scripts tabulate data

THESE NUMBERS ARE OPTIMISTIC

Is the technique worthwhile?

- Yes. First, the client is unmodified and with a perfect server you can explore client performance issues.
- Second, you can compare different options (such as TCP vs. UDP) because the server is constant in its configuration
- Of course, you should question the validity of the absolute numbers. I believe they are optimistic simulations of non-disk bound servers.
- We are mostly looking at networking and protocol processing performance with this approach — server cached.
- I do not have sources for Solaris 2.5.1, my approach is black box mostly.

Read results

Read Throughput of 20MB File in KB/s							
	UDP		TCP				
	100BaseT	FDDI	100BaseT	FDDI			
NFS V2 8KB	6274	6263					
NFS V3 8KB	9499	9311	8048	6067			
NFS V3 32KB	10629	11751	9093	6317			

Notes:

- 1. reference fddi-new-r=5,w=8 and 100tx-new-synsw-hme2.5.1,hd,r=6,w=8
- 2. 11 samples, remove file between each write/read pair.
- 3. Used Sun Microsystems 100BaseT (hme) card, and Cisco CDDI cards and hubs.

Write results

Write Throughput of 20MB File in KB/s							
	UDP		TCP				
	100BaseT	FDDI	100BaseT	FDDI			
NFS V2 8KB	9292	9723					
NFS V3 8KB	* 8863	10051	7527	7127			
NFS V3 32KB	10387	11657	8543	8372			

Notes:

- 1. reference fddi-new-r=5,w=8 and 100tx-new-synsw-hme2.5.1,hd,r=6,w=8
- 2. 11 samples, remove file between each write/read pair. simple average
- 3. * Had one low outlier, else would've expected similar to FDDI

Observations

- UltraSPARC 1 levelled FDDI and 100BaseT results
 - On SuperSPARC 20's running Solaris 2 FDDI was lower performance than 100BaseT inefficient CDDI driver implementation?
- O Hot dang! A single client can exhaust a 100mb/s link on reading and writing!
 - As a bounds of what to expect, expect full bandwidth of your pipe.

Observations continued

- Is TCP as a transport always a lose for NFS?
 - Other measurements of a real server with data forced to come off disk showed TCP a win but I wonder if there was an artifact in that test.
 - Customers have reported lower performance with TCP in naive benchmarking
 - But an argument can be made that outside a isolated benchmark network TCP should always win?

Interim questions

- Is TCP necessary? And if so, is performance (overhead reduction?) reachable of the UDP level?
- WebNFS and Version 4 are promoting TCP as the transport — are wide area issues of reliability in conflict with local area issue of performance?
- O How do you position this to customers?

Side comment: 10BaseT is dead, enter the '90's and start cranking on high speed networks.

Observations continued

O Client tunings in Solaris 2.5.1 affect read performance.

Read Throughput of 20MB File in KB/s							
	UDP		TCP				
	FDDI untuned	FDDI tuned	FDDI untuned	FDDI tuned			
NFS V2 8KB	4706	6263					
NFS V3 8KB	6914	9311	4399	6067			
NFS V3 32KB	9826	11751	6329	6317			

Notes:

- 1. untuned defaults nfs_nra and nfs3_nra to "1", in tuning I changed to "5", increasing the read-ahead. Write performance in excess of read performance suggests poor read-ahead strategy or not aggressive enough.
- 2. Default behaviour favors 32KB transfer size -- is readahead number of "xfer" size units? For small xfers size, read-ahead should increase.

Conclusion

- No wonder customers get confused I'm confused.
- More characterization work on high speed links is needed.
- O Investigation of TCP performance is needed.
- We need to look forward now to Gigabit speeds. Can NFS serve this area or do we need custom streaming protocols?
- O Any changes going into Version 4?

Please come by and talk to me if you think you have a better client, or have some data on throughput performance to share.