

Page 1 lm@sgi.com Feb 28 1996



#### A new name server architecture

# John Schimmel, Larry McVoy & Andrew Chang jes,lm,awc@engr.sgi.com



Silicon Graphics Engineering







Page 2 lm@sgi.com Feb 28 1996



### What are the problems we are trying to solve?

General name service cleanup

**Client side caching** 

**Client side impervious to temporary name server failures** 

**Support multiple nameserver protocols** 

Want less, or no, configuration

Want less and easier administration

Secure name service







Page 3 lm@sgi.com Feb 28 1996



#### What problems are we not trying to solve?

No new name server protocols

No new name server configuration

No new anything that is unnecessary

Use old technology where possible







Page 4 lm@sgi.com Feb 28 1996



## Outline

**Client side problems & solutions** 

**Server side problems & solutions** 

**Performance problems & solutions** 

**Administration problems & solutions** 

**Security problems & solutions** 

**Open Issues** 

Release schedules, etc.







Page 5 lm@sgi.com Feb 28 1996



#### **Client side name server issues**

Client side interfaces to DNS, YP, etc. in libc

- Crufty, name server specific code
- Hard to fix bugs, change policy, and/or add new services

Client side caching is add hoc

- One entry cache is typical in libc
- Libc caches flushed on execv()
- DNS may/may not have a cache
- No negative caching anywhere







Page 6 lm@sgi.com Feb 28 1996



#### **Client side changes**

All name service specific code removed from libc

Add per client, system wide, service independent cache

Add "cache miss handler" (aka resolver)







Page 7 lm@sgi.com Feb 28 1996



## **Client side libc interfaces**

No changes visible to applications

• gethostbyname() stays the same

New generic lookup interface

• nslookup()

Interfaces in libc greatly simplified

```
extern char *
nslookup(char *domain, char *map, char *key);
char *
getaliasbyname(char *alias)
{
```

return (nslookup(0, "aliases", alias));







Page 8 lm@sgi.com Feb 28 1996



#### **Client side cache**

The cache is a multi reader/writer "database"

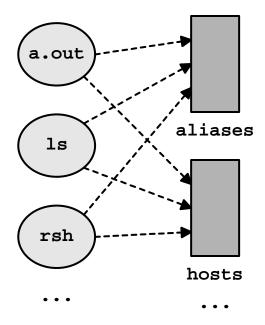
- Uses mmap (smaller & faster)
- Uses dbm compatible interface (with extensions)
- 64 bit, network byte order data structures
- Libc lookup queries the cache







Page 9 lm@sgi.com Feb 28 1996




## **Client side cache picture**

Only one copy of the data in memory

• The entire cache for all maps & processes can be 4K

All processes share all data

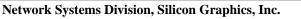






Page 10 lm@sgi.com Feb 28 1996




### **Client side resolver: lamed process**

nslookup() calls lamed to resolve cache misses

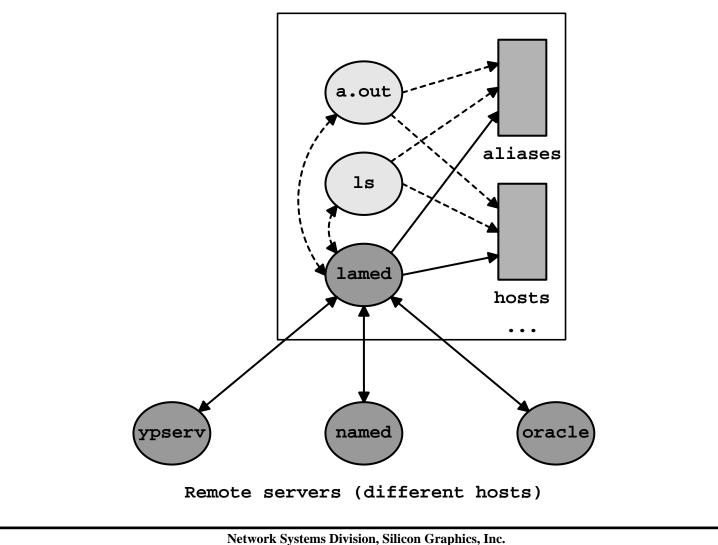
lamed

- has generic "object" interface for querying name services
  - each name service is a shared library
  - reload when nsswitch.conf changes
- implements name service ordering (/etc/nsswitch.conf)
- manages the cache
  - timeouts, flushes, negative caching










Page 11 lm@sgi.com Feb 28 1996



### **Client side lamed picture**

Client









Page 12 lm@sgi.com Feb 28 1996



#### **Client side summary**

**Remove name service specific code from libc** 

Add a fast system wide cache

Add a client side, name server independent resolver

Move name service specific code into shared libs

Add support for /etc/nsswitch.conf







Page 13 lm@sgi.com Feb 28 1996



#### Server side name server issues

N services imply N server processes

• i.e., ypserv, named, etc.

Some servers call other servers directly

• yp calls DNS

Server caching is ad hoc

Server setup is ad hoc







Page 14 lm@sgi.com Feb 28 1996

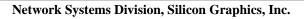


#### Server side super server

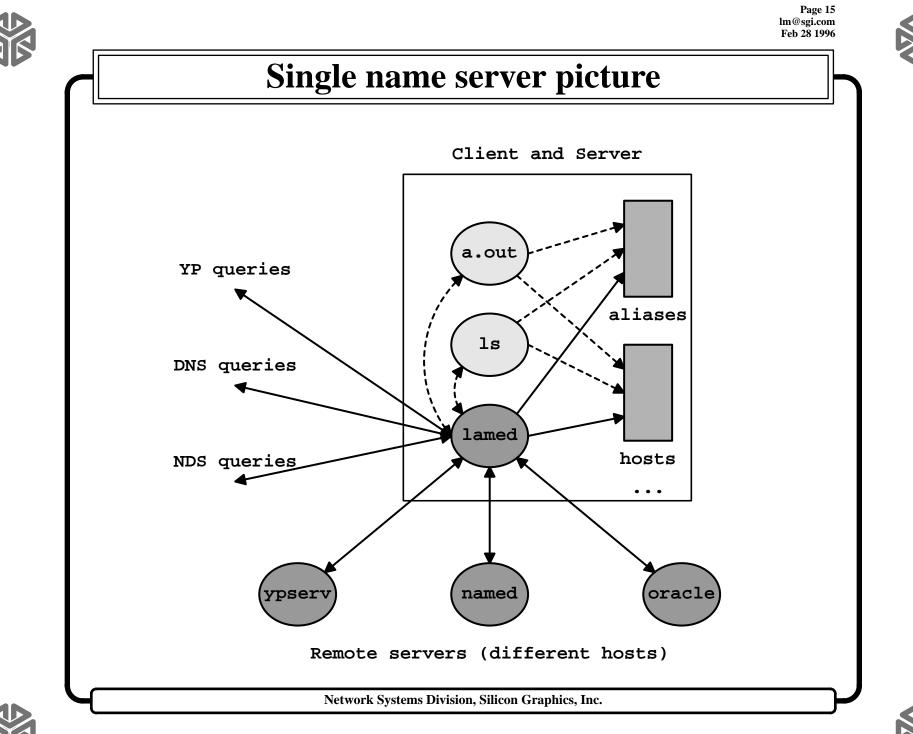
Teach server to answer other server requests

**Support common name services** 

• ypserv, dns, others


Server acts as a translator when combined with client side

• we get this "for free"


Lamed server acts as a cache when used as a translator

• we get this "for free" too















Page 16 lm@sgi.com Feb 28 1996



## **Absorbing old protocols**

So far, server is a translator and a cache

**Can absorb old implementations** 

• ypserv has been re-implemented in lamed

Server to server protocol is DNS/Hesiod

• Possible, and likely, that DNS & lamed will merge







Page 17 lm@sgi.com Feb 28 1996



## **Performance problems & solutions**

**RPC** performance

**Database (cache) performance** 

**Scaling problems** 





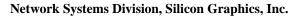


Page 18 lm@sgi.com Feb 28 1996



## **RPC** performance

**Blocking RPC's kill performance** 


All lamed to name server queries are non blocking

- Decompose RPC into send, recv, and demux
- demux replies using RPC xid
- One process is fast enough to have 1000's of outstanding RPCs.

For protocols w/o XIDs, use helper processes

- Send RPC style messages to helper
- Local files may be done this way









Page 19 lm@sgi.com Feb 28 1996



## **Database performance**

Load 2 million entry passwd map

- 5 minutes, CPU bound
- Cold lookup
  - log2(database size / bits per page) + 1 disk reads
  - One lookup is ~24 milliseconds
    - + 4K pagesize, 128MB database
- Hot lookup
  - About 6 usecs on a 200Mhz R4K (no TLB misses)

Database memory usage

- hash is about 70% efficient
- 2 million entry passwd table was 215 MB







Page 20 lm@sgi.com Feb 28 1996



## **Scaling problems**

Most name servers perform poorly with large databases

**Initial server release will support (in a single domain)** 

- 5,000,000 users
- 7,500,000 hosts
- All associated data (groups, etc.)

**Requires 64 bit file system offsets & holey files** 

Long term goals are 100x initial goals

It's all a database problem and mdbm scales







Page 21 lm@sgi.com Feb 28 1996



## Administration problems and solutions

Zero configuration clients

Zero configuration slave servers

Administrative "shell"

Server administration

Pseudo sub domains

Well known master locations







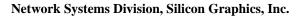
Page 22 lm@sgi.com Feb 28 1996



## **Zero configuration clients**

Multicast upon first boot looking for name server

**Cache results** 


Use the closest server

**Reverify servers periodically** 

Default behavior is to cache from the remote server

- Implies client has no /etc/nsswitch.conf, uses server's
- Can override by providing /etc/nsswitch.conf









Page 23 lm@sgi.com Feb 28 1996



#### Zero configuration slave servers

A lamed client becomes a slave server by adding "-s"

- No other configuration necessary
- Well, until you add security into the soup

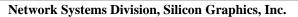
That client will answer future server location multi casts







Page 24 lm@sgi.com Feb 28 1996




## Administrative "shell"

#### ns command [options]

- ns build creates the maps from flat files
- ns build -yp creates maps from yp maps
- ns chpass changes password
- etc.









Page 25 lm@sgi.com Feb 28 1996



### **Server administration**

Default data source is RCS versioned flat files

- live in /var/ns/etc..engr.sgi.com
- ns build looks in /var/ns/etc..\* for multi domain service
  - /var/ns/etc..engr.sgi.com
  - /var/ns/etc..corp.sgi.com

#### DNS databases automatically generated from flat files







Page 26 lm@sgi.com Feb 28 1996



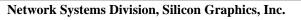
#### **Pseudo sub domains**

Used to allow change to a portion of a domain

• I.e., each building in engr.sgi.com is a sub domain

Implemented as sub directories in /var/ns/etc..engr.sgi.com

Each map is constructed from the concatenation of all files


• i.e., hosts B1/hosts B2/hosts B3/hosts ...

Permission checking is standard file system permissions

**Could be made more sophisticated if needed** 

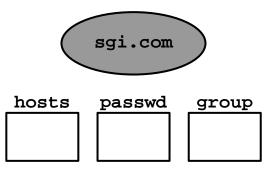
• Restrict IP address allocation, uid allocation, etc.



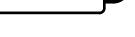







Page 27 lm@sgi.com Feb 28 1996




### **Small company example**

Small company, one administrator, single flat domain space

/var/ns/etc..sgi.com

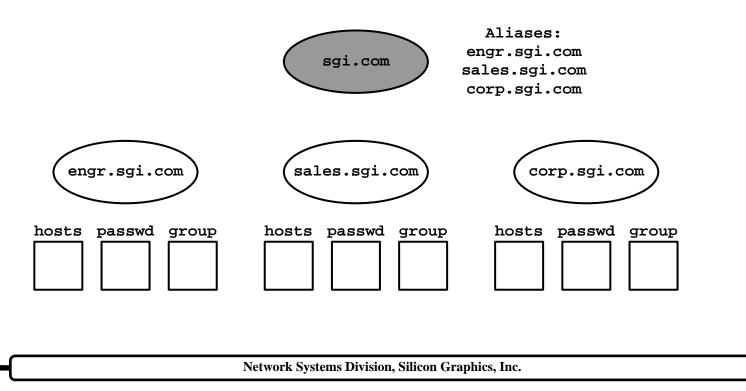








Page 28 lm@sgi.com Feb 28 1996



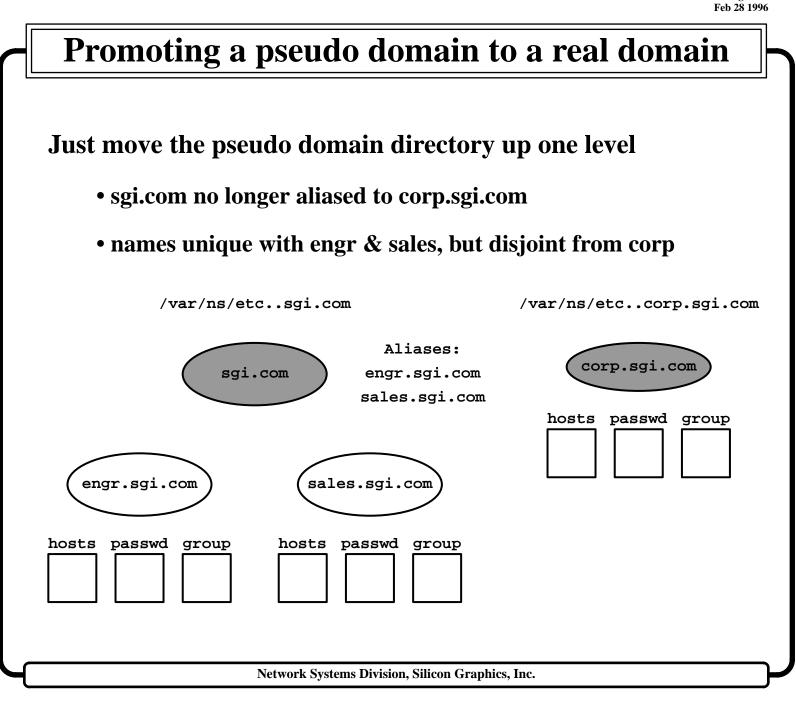

# Growing company example

**Still single domain** 

- multiple admins, 1 per pseudo domain
- names (users) unique across all pseudo domains

/var/ns/etc..sgi.com










Page 29 lm@sgi.com Feb 28 1996









Page 30 lm@sgi.com Feb 28 1996



#### Well known master locations

ns.domain.name

ns.engr.sgi.com

ns.sgi.com

ns.com

ns.





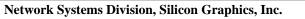


Page 31 lm@sgi.com Feb 28 1996



#### **Remote security**

**Current model is yp style security (i.e., none)** 


Moving towards RSA model

- Not until release 2.0
- Probably not until US gov deregulates encryption

Goals

- provide correct (digitally signed) data
- allow remote updates (chpass)









Page 32 lm@sgi.com Feb 28 1996



## **Open Issues**

**Boot strapping** 

**Export regulations** 

**DNS & lamed merge o matic** 







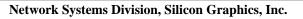
Page 33 lm@sgi.com Feb 28 1996



#### **Schedules and standardization**

Code will come standard in future IRIX versions

- Client side due out spring '96
- Server side in staged releases
  - No security or DNS merge in server release 1.0


**Reference port will be distributed for free in Linux** 

Code available from SGI under ONC style license

**Several RFCs forthcoming** 

• Client side, server side, location mechanisms, etc.









Page 34 lm@sgi.com Feb 28 1996



#### A new name server architecture

# John Schimmel, Larry McVoy & Andrew Chang jes,lm,awc@engr.sgi.com



Silicon Graphics Engineering



