
Dave Wysochanski dwysocha@redhat.com

NFS FS-Cache update

NFS Fall BakeAThon October 2021

mailto:dwysocha@redhat.com


Agenda
● Old FS-Cache API, existing problems
● New fscache API (fscache-iter)
● New netfs library / API
● New fscache “fallback” API
● NFS fscache problems



Old FS-Cache API, problems
● Metadata for data being cached

○ fscache does not maintain its own metadata
○ Relies on backing filesystem assumptions about holes and zero extent 

handling
○ Data corruption is possible, AKA “the bmap() problem”

● IO to backing filesystem
○ Call readpage() on backing filesystem and snoop page waitqueue

● Object state machine is complex
● Page-based API

https://lore.kernel.org/all/YO17ZNOcq+9PajfQ@mit.edu/


New FS-Cache API
● Metadata for data being cached

○ fscache maintains its own metadata for data being cached
○ Agnostic to holes / zero block handling of backing filesystem
○ Limitation: cache block granularity set to something like 256KiB

■ Current limitation of 1GB of data/file
● IO to backing filesystem

○ Direct IO via kiocb
● Object state machine greatly simplified
● Request-based API

○ See include/linux/netfs.h

https://github.com/torvalds/linux/blob/master/include/linux/netfs.h


New netfs library / API
● Local caching (fscache)
● Direct I/O, Async I/O
● I/O joining and splitting (see NFS coalesce issue)
● Content encryption and compression
● Invalidation support
● Snapshot & layout support (ceph)
● Takes over VM interfaces

○ eg. AFS's readpage just goes directly to netfs_readpage()
● Hides the existence of pages from the filesystem

○ iov_iter, folios
● The network filesystem provides:

○ Functions to issue data fetch and store requests
○ Functions/info to manage joining and splitting



New netfs library / API
● Recommended way to use new fscache API
● Intended to perform all VM interface services
● A network filesystem (afs, cifs, nfs) defines at least

○ issue_op(): Issue IO to server (i.e. NFS READ)
○ clamp_length(): Set max IO size (i.e. rsize)

■ Inadequate for NFS pageio API
● NFS may split IO based on various factors
● Not known at the outset, on page-by-page basis

● A network filesystem’s readpage() and readahead() become trivial
● Changes from page-based API (old fscache) to request based API

https://lore.kernel.org/linux-nfs/9cfd5bc3cfc6abc2d3316b0387222e708d67f595.camel@hammerspace.com/


New fscache “fallback” API
● Temporary alternative to netfs API

○ Temporary ground for existing users of old API (cifs, NFS)
● Page-based, synchronous (performance?)
● Enables removal of old fscache IO

○ A future patchset will remove the old API
●  Allows rewrite of existing fscache internals, IO path



NFS fscache problems: netfs API
● NFS cannot tell netfs size of a request when request is created (issue_op)
● netfs calls into filesystem via issue_op()
● filesystem calls netfs via netfs_subreq_terminated()
● Request based, netfs requires we tell it “rsize” (clamp_length)
● The NFS pageio (aka “pgio”) API decides on a page-by-page basis

■ Loop on each page
■ Add page into an existing request?

● nfs_pageio_do_add_request()
○ nfs_coalesce_size()

■ pg_test()
● Y: Add page to existing request
● N: Send RPC with existing pages in request, new request

https://lore.kernel.org/linux-nfs/CALF+zOnCisFWTubWEHhTLpt6=CUb7n86YvrNX3nreCYS73_v_Q@mail.gmail.com/
https://raw.githubusercontent.com/torvalds/linux/master/fs/nfs/pagelist.c


NFS fscache problems: netfs API
● Why can’t we tell netfs the size of a request (nfs_coalesce_size)?

○ pg_max_retrans (ETIMEDOUT, EIO)
○ incompatible open or lock contexts of nfs_page
○ non-contiguous nfs_page
○ pg_test()

■ pnfs layouts: not known when a request is created
● Possible approaches

○ Terminate a netfs request early (cannot coalesce)
■ Netfs calls issue_op() a second time for remainder of request

● Existing issue_op() still in progress
○ need to discard somehow, nfs_pageio_do_add_request() fail

○ Additional NFS completion handler logic
■ Call netfs_complete_request() when all NFS requests complete

● Handle one request success and one fail?
● Overly complicated?



NFS fscache problems: related 
● Convert readpages() to readahead()

○ Assuming NFS patch to use fallback API
○ Just needs patch(es) at this point?

■ readpage() to readahead() conversion
■ NFSIOS_READ* counters

● Handle folios
● Encryption?



CONFIDENTIAL Designator

Questions!


