
Chuck Lever <chuck.lever@oracle.com>

Linux NFS: Using Tracepoints
A new troubleshooting paradigm

mailto:chuck.lever@oracle.com

Today’s Take-aways

What are Linux tracepoints?

Why have we replaced the venerable dprintk?

How do I enable and view trace events?

Tracepoints Replace dprintk()
Efficiency

• A single trace event happens entirely in memory and involves no I/O to the
console or a log file

• Therefore, tracepoints are not rate-limited like log messages are

• You can enable one trace event at a time or whole subsystems at once

• You can filter trace events while tracing, or afterwards

3

Tracepoints Replace dprintk()
Precision

• Each trace event record contains:

• A microsecond-precision timestamp

• The CPU ID

• The pid and command that was running on that CPU

• IRQ state

4

Tracepoints Replace dprintk()
Integration

• Tracepoints can work in conjunction with kprobes, eBPF, or SystemTap

• You can enable multiple trace subsystems at once (e.g., nfsd, kmem, and
sched)

• The trace log is interleaved and timestamped

• You can enable tracepoints along with other tracing plug-ins, like
function_graph

• You can record a stack trace when every enabled tracepoint fires

5

Tracepoints Replace dprintk()
NFS and sunrpc related features

• NFS/sunrpc trace events can name a particular RPC task, nfsd thread, XID, or
endpoint address

• NFS/sunrpc trace events usually display information symbolically rather than
as raw numbers (raw data is still available)

• We’ve created two categories:

• Control flow - chatty, report on resource usage or normal events

• Exceptional - name ends in “_err”, fire rarely

6

Using trace-cmd
How to discover available trace events

• Use “trace-cmd list”

• Each available event is displayed as “<subsystem>:<event name>”

• Trace events in modules that are not loaded are not available

7

Using trace-cmd
Enabling and disabling tracepoints

• Once you have selected the set of tracepoints you want to enable, use:

• trace-cmd start -e <trace point> [-e <trace point> …]

• trace-cmd stop

• trace-cmd reset

8

Using trace-cmd
Displaying the trace buffer

• Two ways to go:

• Once tracing has stopped, use “trace-cmd show > <output file>” to save
the ring buffer

• Does not consume the content of the ring buffer

• Capture is limited to the size of the ring buffer

• While tracing is enabled, use “trace-cmd show -p” to tail the trace output
pipe. This consumes all ring buffer content

9

Using trace-cmd
Capturing trace activity over time

• “trace-cmd record -e <trace point> [-e <trace point> …] [<command>]”
captures long-running activity (like an unbounded network capture)

• Command line options can filter by pid, by CPU, etc.

• To end capture, Ctrl-C the trace-cmd program

• The signal causes trace-cmd to write the trace buffer into “trace.dat”

• This command captures continuously, so trace.dat can become very large

10

Using trace-cmd
Filtering a capture

• To view the captured trace events, use “trace-cmd report”

• trace.dat carries trace event format specifiers and other metadata, and can
be copied to other systems

• Simple text-processing tools like awk, grep, and less can operate on the
output of “trace-cmd report”

• These can be used in combination with filtering:

• “trace-cmd report -F <trace point filter>”

• “trace-cmd report -R”
11

Using trace-cmd
Supplemental material

• The trace-cmd man pages: trace-cmd-record, trace-cmd-report, etc.

• Documentation/trace/

• https://lwn.net/Articles/410200/

• https://github.com/rostedt/trace-cmd

12

https://lwn.net/Articles/410200/
https://github.com/rostedt/trace-cmd

