
NFS/RDMA BASICS
Part Three – Code Organization



CODE ORGANIZATION

➤ Client transport overview 

➤ Server transport overview 

➤ NFSv4.1 backchannel 
operation



RDMA VERBS

➤ In the Linux kernel, the RDMA verbs API is provided by a set 
of function calls and data objects. 

➤ These work with any RDMA-enabled network fabric 

➤ Verb names start with ib_ : 

➤ ib_post_send, ib_modify_qp, ib_sge 

➤ RDMA core functionality uses names start with rdma_ : 

➤ rdma_resolve_addr, rdma_create_qp

3



UPCALLS

➤ In the Linux kernel, verbs provider upcalls are used: 

➤ When a Send or Receive completion fires 

➤ When reporting a connection-related event 

➤ When reporting a QP error 

➤ Upcalls may occur in process or soft IRQ context. 

➤ Posting a Send or Receive WR can be done in either 
context.

4



THE RPCRDMA KERNEL MODULE

➤ Source code is located in net/sunrpc/xprtrdma: 

➤ Server code is in files names svc_rdma_* 

➤ Client code is everything else 

➤ Currently one module, rpcrdma.ko, contains both the client 
and server transports.

5



CLIENT 
TRANSPORT 

OVERVIEW



CLIENT TRANSPORT SWITCH

➤ transport.c

7

Method Purpose
reserve_xprt Take write lock
release_xprt Release write lock
connect Establish a connection
close Close a connection
buf_alloc Allocate buffers for Call and Reply
buf_free Release buffers
send_request Send an RPC Call
timer An RPC timeout occurred



MARSHALING RPC CALLS

➤ rpc_rdma.c 

➤ Main entry point is rpcrdma_marshal_req. 

➤ Decides whether to send each RPC Call inline, use scatter-
gather, reduce data items, or use special chunks. 

➤ Uses NFS XDR reply size information 

➤ Chunk lists are constructed and memory is registered. 

➤ The Transport Header is built in a separate buffer, then this 
buffer plus the buffer containing the RPC message are Sent 
together.

8



HANDLING RPC CALLS WITH DATA PAYLOADS

➤ NFS sets a flag in the xdr_buf to indicate when the NFS 
operation is allowed to use a Read chunk. The xdr_buf’s page 
list contains the data payload. 

➤ If the RPC Call is smaller than the inline threshold, the 
data buffer is made part of the Send message, using the 
Send WR’s scatter-gather list. 

➤ If the RPC Call is large, the data buffer is registered as a 
Read chunk and added to the Read list. 

➤ If the RPC Call is large and no Read chunk is allowed, the 
whole message is registered and added to the Read list as a 
Position Zero Read chunk.

9



PREPARING FOR RPC REPLIES WITH DATA PAYLOADS

➤ NFS sets a flag in the xdr_buf to indicate when the NFS 
operation is allowed to use a Write chunk. The xdr_buf’s page 
list contains the data buffer. 

➤ If the estimated maximum size of the RPC Reply is smaller 
than the inline threshold, no additional action is needed. 

➤ If the estimated maximum size of the RPC Reply is large, 
the data buffer is registered as a Write chunk and added to 
the Write list. 

➤ If the estimated maximum size of the RPC Reply is large and 
no Write chunk is allowed, a Reply chunk is registered and 
added to the Transport Header.

10



HANDLING REPLIES

➤ rpc_rdma.c 

➤ Receive upcall runs in soft IRQ context 

➤ DMA sync, process the credits field, queue work 

➤ rpcrdma_reply_handler runs in workqueue context 

➤ Fully parses the transport header 

➤ Invalidates and DMA unmaps memory associated with 
request 

➤ Pulls up and reconstructs the RPC Reply xdr_buf 

➤ Invokes xprt_complete_rqst

11



GENERIC RDMA HELPERS

➤ verbs.c 

➤ Send, Receive, QP error, and connect upcalls 

➤ Transport set up and tear-down 

➤ A regbuf is a memory region with an lkey and DMA 
mapping state 

➤ Registered for local access only 

➤ Used internally by the transport for RPC buffers 

➤ Helpers for posting Send and Receive WRs

12



MEMORY REGISTRATION OPS

➤ Specific methods for performing memory registration and 
invalidation on memory that belongs to the upper layer

Method Purpose
map Register an MR
unmap_sync Invalidate all MRs for an RPC
unmap_safe Invalidate or recover all MRs for an RPC
recover_mr Recover one MR
open Compute registration parameters
maxpages Return maximum pages per MR
init_mr Prepare one MR for use by the transport
release_mr Release MR before transport destruction

13



FRWR MEMORY REGISTRATION

➤ frwr_ops.c 

➤ Registering memory for one RDMA segment: 

➤ DMA map the region then post a FastReg WR to register 
it 

➤ WR is not signaled 

➤ Invalidating memory for one RPC: 

➤ Post LocalInv WRs for all registered MRs 

➤ Wait for completion 

➤ DMA unmap all MRs

14



FMR MEMORY REGISTRATION

➤ fmr_ops.c 

➤ Registering memory for one RDMA segment: 

➤ DMA map the region 

➤ Use ib_map_phys_mr to register it 

➤ Invalidating memory for one RPC: 

➤ Build a list of all MRs 

➤ Use ib_unmap_fmr to invalidate them 

➤ DMA unmap all MRs

15



THE CONNECT WORKER

➤ transport.c and verbs.c 

➤ IP address is resolved to a GID/LID (native address) 

➤ Connecting a transport is serialized with sending RPC Calls 

➤ Connect worker also handles device unload events 

➤ Registered memory has to be “re-registered” after a 
reconnect 

➤ DMA mapped regbufs have to be remapped after a device 
unload

16



INTERESTING DATA STRUCTURES

➤ xprt_rdma.h 

➤ rpcrdma_req – contains per-request state 

➤ rpcrdma_rep – state of a reply 

➤ rpcrdma_mw – state of one memory region 

➤ rpcrdma_xprt – per-transport state 

➤ rpcrdma_regbuf – internal buffer with DMA mapping state 

➤ rpcrdma_buffer – set of reqs and reps for one connection

17



LOCKING

➤ Implicit serialization 

➤ The RPC client serializes calls to ->send_request, -
>connect, and ->close 

➤ The provider serializes calls to completion handlers

Spin lock Protected list
rb_lock rb_send_bufs, rb_recv_bufs, rb_pending
rb_mwlock rb_mws, rb_all
rb_reqslock rb_allreqs
rb_recoverylock rb_stale_mrs

18



SERVER 
TRANSPORT 

OVERVIEW



SERVER TRANSPORT SWITCH

➤ svc_rdma_recvfrom.c 

➤ svc_rdma_recvfrom – called by an nfsd thread to receive an 
RPC message from a client and assemble it into an xdr_buf. 
Dequeues complete Receives, initiates RDMA Reads, 
dequeues complete Reads. 

➤ svc_rdma_sendto.c 

➤ svc_rdma_sendto – called by an nfsd thread to send an RPC 
message in an xdr_buf to a client. Initiates RDMA Writes 
and Sends. 

➤ RDMA Read and Write WRs are scheduled in svc_rdma_rw.c

20



ACCEPTING CONNECTIONS

➤ transport.c 

➤ Sets up a listener QP 

➤ New connections accepted in svc_rdma_accept, which 
allocates fixed per-connection resources 

➤ Some completion upcall handlers live in this file 

➤ And one helper that posts Send operations

21



INTERESTING DATA STRUCTURES

➤ svcrdma_xprt – per-connection state 

➤ svc_rdma_op_ctxt – state for each Send and each Receive. 

➤ svc_rdma_rw_ctxt – state for a set of RDMA Reads or Writes. 

➤ svc_rdma_chunk_ctxt – completion context for one Read or 
Write chunk. 

➤ svc_rdma_write_info – state for one Write chunk 

➤ svc_rdma_read_info – state for one Read chunk

22



LOCKING

➤ Upper Layer locking 

➤ A per-transport mutex serializes calls to ->sendto 

➤ Everything runs in a kthread or workqueue except 
handle_connect_req

23

Spin lock Protected list
sc_rq_dto_lock sc_read_complete_q, sc_rd_dto_q
sc_ctxt_lock sc_ctxts
sc_rw_ctxt_lock sc_rw_ctxts
sc_lock sc_accept_q



NFSV4.1 
BACK 

CHANNEL 
OPERATION



NFSV4.1 BACKCHANNEL

➤ svc_rdma_backchannel.c 

➤ Plugs into client transport switch 

➤ Sends CB Calls from the server, handles CB Replies 

➤ backchannel.c 

➤ Plugs into RPC server framework 

➤ Handles incoming CB Calls on the client, sends CB Replies

25



LOCKING

26

Spin lock Protected list
bc_pa_lock bc_pa_list
rb_reqslock rb_allreqs




